Preprint
Article

This version is not peer-reviewed.

Flexible Smart Textile Coated by PVDF/Graphene Oxide With Excellent Energy Harvesting Toward a Novel Class of Self-Powered Sensors: Fabrication, Characterization and Measurements

Submitted:

30 March 2021

Posted:

31 March 2021

Read the latest preprint version here

Abstract
Because of some of their diverse benefits, intelligent textiles have attracted a great deal of interest among specialists over the past decade. This paper describes a novel approach to the manufacture of intelligent piezoelectric polymer-based textiles with enhanced piezoelectric responses for applications that extract biomechanical energy. Here we report a highly scalable and ultrafast production of smart textile piezoelectric containing graphene oxide nanosheets (GONS) dispersed in polyvinylidene fluoride (PVDF). In this work, Cotton textiles (CT) were functionalized and by graphene oxide (GO), using PVDF as a binder to obtain a CT-PVDF-GO material. Tetraethyl orthosilicate (TEOS) was further grafted as a coating layer to improve the surface compatibility, resulting in the CT-PVDF-GO-TEOS composite. The research results show that the addition of GONS significantly improves PVDF's overall crystallization rate on CT. More specifically, the piezoelectric β-phase content (100 % higher F[β]) and crystallinity degree on the piezoelectric properties of composite cotton fiber has been improved effectively. Consequently, this fabricated piezo-smart textile has a glorious piezoelectricity even with comparatively low coating content of PVDF-GONS-TEOS. Based on it, the as-fabricated piezoelectric textile device has resulted in the output voltage of up to 13 mV for a given frequency (fm = 8 Hz) at fixed strain amplitude value (0.5 %). It is believed that this research may further reveal the field of energy harvesting for possible applications in the future.. In addition, the set of experimental results that illustrate the smart textile was carried out and discussed, and how it can be used as a wearable device source for this smart textile. Finally, the approach described in this study can also be used to construct other desirable designs, for a wearable low-consumption sensor, etc.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated