Preprint
Article

This version is not peer-reviewed.

Multimodal Hate Speech Detection in Greek Social Media

A peer-reviewed article of this preprint also exists.

Submitted:

13 March 2021

Posted:

15 March 2021

You are already at the latest version

Abstract
Hateful and abusive speech presents a major challenge for all online social media platforms. Recent advances in Natural Language Processing and Natural Language Understanding allow more accurate detection of hate speech in textual streams. This study presents a multimodal approach to hate speech detection by combining Computer Vision and Natural Language processing models for abusive context detection. Our study focuses on Twitter messages and, more specifically, on hateful, xenophobic and racist speech in Greek aimed at refugees and migrants. In our approach we combine transfer learning and fine-tuning of Bidirectional Encoder Representations from Transformers (BERT) and Residual Neural Networks (Resnet). Our contribution includes the development of a new dataset for hate speech classification, consisting of tweet ids, along with the code to obtain their visual appearance, as they would have been rendered in a web browser. We have also released a pre-trained Language Model trained on Greek tweets, which has been used in our experiments. We report a consistently high level of accuracy (accuracy score=0.970, f1-score=0.947 in our best model) in racist and xenophobic speech detection.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated