Preprint
Article

Mechanics Modeling of Residual Stress Considering Effect of Preheating in Laser Powder Bed Fusion

Submitted:

12 March 2021

Posted:

15 March 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This study aimed at the investigation of the effect of substrate preheating on residual stress in laser powder bed fusion using a physics-based analytical model. In this study, an analytical model is proposed to predict the residual stress through the calculation of preheating affected temperature profile and thermal stress. The effect of preheating is super-positioned with initial temperature in the modeling of temperature profile using a moving heat source approach; the resultant temperature gradient is then employed to predict the thermal stress from a point body load approach. If the thermal stress exceeds the yield strength of the material, then the residual stress under cyclic heating and cooling will be calculated based on the incremental plasticity and kinematic hardening behavior of metal. IN718 is used as a material example to pursue this investigation. To validate the predicted residual stress, experimental measurements are conducted using X-ray diffraction on IN718 samples manufactured via laser powder bed fusion under different process conditions. Results showed that preheating of the substrate could reduce the residual stress in an additively manufactured part due to the reduction in temperature gradient and resultant shrinkage stresses. However, the excessive preheating could have an opposite impact on residual stress accumulation. Moreover, the results confirm that the proposed model is a valuable tool for the prediction of residual stress- eliminating the costly experiments and time-consuming finite element simulations.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

378

Views

289

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated