Preprint
Article

Displacement Formulations for Deformation and Vibration of Elastic Circular Torus

This version is not peer-reviewed.

Submitted:

10 March 2021

Posted:

11 March 2021

Read the latest preprint version here

Abstract
The formulation used by most of the studies on an elastic torus are either Reissner mixed formulation or Novozhilov's complex-form one, however, for vibration and some displacement boundary related problem of a torus, those formulations face a great challenge. It is highly demanded to have a displacement-type formulation for the torus. In this paper, I will carry on my previous work [ B.H. Sun, Closed-form solution of axisymmetric slender elastic toroidal shells. J. of Engineering Mechanics, 136 (2010) 1281-1288.], and with the help of my own maple code, I am able to simulate some typical problems and free vibration of the torus. The numerical results are verified by both finite element analysis and H. Reissner's formulation. My investigations show that both deformation and stress response of an elastic torus are sensitive to the radius ratio, and suggest that the analysis of a torus should be done by using the bending theory of a shell, and also reveal that the inner torus is stronger than outer torus due to the property of their Gaussian curvature. Regarding the free vibration of a torus, our analysis indicates that both initial in u and w direction must be included otherwise will cause big errors in eigenfrequency. One of the most intestine discovery is that the crowns of a torus are the turning point of the Gaussian curvature at the crown where the mechanics' response of inner and outer torus is almost separated.
Keywords: 
;  ;  ;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

385

Views

485

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated