Preprint
Article

This version is not peer-reviewed.

The Modulating Effect of Ethanol on the Morphology of a Zr-based Metal-Organic Framework under Room Temperature in the Cosolvent System

Submitted:

09 March 2021

Posted:

10 March 2021

You are already at the latest version

Abstract
We report that ethanol, used together with water, plays a crucial role in tuning the structures of a zirconium-based Metal-Organic Framework, the 12-connected MOF-801, and the possible mechanisms of this modulating effect. By employing the cosolvent system of ethanol and water just under room temperature without the presence of a monotopic carboxylic acid as the modulator, MOF-801 in various morphologies of different sizes can be synthesized. The linear correlation between the ethanol/water ratio and the crystal sizes is also demonstrated. The growth mechanism is mainly explained by ethanol’s binding with the metal ion clusters and the Marangoni Flow Effect. Ethanol competes with the linker molecules in coordinating with the Zr metal clusters, a role similar to that of the modulators. The Marangoni Flow Effect, which dominates at a certain solvent ratio, further promotes the 1-D alignment of the MOF-801 crystals.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated