Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Entropy Optimized Flow of Hybrid Nanomaterial over a Porous Stretchable Surface

Version 1 : Received: 5 March 2021 / Approved: 8 March 2021 / Online: 8 March 2021 (15:57:01 CET)

How to cite: Hayat, T.; Kainat, Z.; Khan, S.A.; Alsaedi, A. Entropy Optimized Flow of Hybrid Nanomaterial over a Porous Stretchable Surface. Preprints 2021, 2021030232 (doi: 10.20944/preprints202103.0232.v1). Hayat, T.; Kainat, Z.; Khan, S.A.; Alsaedi, A. Entropy Optimized Flow of Hybrid Nanomaterial over a Porous Stretchable Surface. Preprints 2021, 2021030232 (doi: 10.20944/preprints202103.0232.v1).

Abstract

The aim of this articles is to investigate the entropy optimization in unsteady MHD flow Darcy-Forchheimer nanofluids towards a stretchable sheet. The surface we tend to think about is porous and stretchy under acceleration. Flow occurs due to the stretching of the surface. Four distinct types of aqueous nanostructures are taken in this examination where copper oxide ( ), copper ( ), titanium dioxide ( ) and aluminum oxide ( ) are the nanoparticles. Irreversibility analysis are discussed through second law of thermodynamics. The expression of energy is mathematically designed and discussed according to heat generation / absorption, dissipation, thermal radiation, and joule heating. The nonlinear PDE (partial differential conditions) is first changed to ODE (normal differential conditions) through appropriate similarity variables. Here we used the numerically embedded solution technique to develop a numerical result for the obtained nonlinear flow expression. Influence of various flow parameter velocity temperature distribution and entropy generation are discussed. Reduction occurs in velocity profile for larger porosity and magnetic parameters. An enhancement in entropy generation and temperature distribution is seen for Brinkman number. An opposite effect is noticed in velocity and temperature through solid volume friction.

Subject Areas

Darcy-Forchheimer; Surface stretch; Unsteady boundary layer; MHD flow; Nanofluid; Heat generation / absorption and entropy analysis

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.