Preprint
Article

This version is not peer-reviewed.

JLGBMLoc: A Novel High-precision Indoor Localization Method Based on LightGBM

A peer-reviewed article of this preprint also exists.

Submitted:

07 March 2021

Posted:

08 March 2021

You are already at the latest version

Abstract
Wi-Fi based localization has become one of the most practical methods for mobile users in location-based services. However, due to the interference of multipath and high-dimensional sparseness of fingerprint data, the localization system based on received signal strength (RSS) is hard to obtain high accuracy. In this paper, we propose a novel indoor positioning method, named JLGBMLoc (Joint denoising auto-encoder with LightGBM Localization). Firstly, because the noise and outliers may influence the dimensionality reduction on high-dimensional sparseness fingerprint data, we propose a novel feature extraction algorithm, named joint denoising auto-encoder (JDAE), which reconstructs the sparseness fingerprint data for a better feature representation and restores the fingerprint data. Then, the LightGBM is introduced to the Wi-Fi localization by scattering the processed fingerprint data to histogram, and dividing the decision tree under leaf-wise algorithm with depth limitation. At last, we evaluated the proposed JLGBMLoc on UJIIndoorLoc dataset and Tampere dataset, experimental results show that the proposed model increases the positioning accuracy dramatically comparing with other existing methods.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated