Preprint
Article

Evaluation of ((La0.60Sr0.40)0.95Co0.20Fe0.80O3-x)-Ag Composite Anode for Direct Ammonia Solid Oxide Fuel Cells and Effect of Pd Impregnation on the Electrochemical Performance

Altmetrics

Downloads

380

Views

418

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 March 2021

Posted:

05 March 2021

You are already at the latest version

Alerts
Abstract
Ammonia produced using renewable hydrogen is being viewed as a promising media for the export of energy from locations rich in renewable energy sources. Solid oxide fuel cells (SOFCs) are efficient devices for converting such exported ammonia back into electricity at the point of use, however investigations on materials and operating regime for direct ammonia fuelled SOFCs are limited. The studies on fuel electrodes tailored specifically for ammonia fuel are limited. In this work, we evaluated the direct ammonia SOFC performance with Silver-Lanthanum Strontium Cobalt Ferrite (Ag-LSCF) composite anode and a novel Palladium (Pd) nanoparticle decorated Silver-Lanthanum Strontium Cobalt Ferrite (Pd-Ag-LSCF) composite anode in the temperature range of 500 °C to 800 °C. It is hypothesized that Palladium nanoparticles in the anode provide hydrogen dissolution and shift the ammonia decomposition reaction towards the right. The cell performance was evaluated with both hydrogen and ammonia as fuels and a clear-cut improvement in the performance was observed with the addition of Pd for both the fuels. The results showed a performance enhancement by 20% and 43% with hydrogen and ammonia fuels respectively from the Pd addition of Ag-LSCF anode. Open circuit voltage (OCV) values of the cells with hydrogen and ammonia fuel recorded over the temperature range of 500 °C to 800 °C indicated the possibility of direct electro-oxidation of ammonia in SOFCs.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated