Lira, R.K.S.; Zardini, R.T.; de Carvalho, M.C.C.; Wojcieszak, R.; Leite, S.G.F.; Itabaiana, I., Jr. Agroindustrial Wastes as a Support for the Immobilization of Lipase from Thermomyces lanuginosus: Synthesis of Hexyl Laurate. Biomolecules2021, 11, 445.
Lira, R.K.S.; Zardini, R.T.; de Carvalho, M.C.C.; Wojcieszak, R.; Leite, S.G.F.; Itabaiana, I., Jr. Agroindustrial Wastes as a Support for the Immobilization of Lipase from Thermomyces lanuginosus: Synthesis of Hexyl Laurate. Biomolecules 2021, 11, 445.
Lira, R.K.S.; Zardini, R.T.; de Carvalho, M.C.C.; Wojcieszak, R.; Leite, S.G.F.; Itabaiana, I., Jr. Agroindustrial Wastes as a Support for the Immobilization of Lipase from Thermomyces lanuginosus: Synthesis of Hexyl Laurate. Biomolecules2021, 11, 445.
Lira, R.K.S.; Zardini, R.T.; de Carvalho, M.C.C.; Wojcieszak, R.; Leite, S.G.F.; Itabaiana, I., Jr. Agroindustrial Wastes as a Support for the Immobilization of Lipase from Thermomyces lanuginosus: Synthesis of Hexyl Laurate. Biomolecules 2021, 11, 445.
Abstract
As a consequence of intense industrialization in the last few decades, the amount of agro-industrial wastes has increasing, where new forms of valorization are crucial. In this work, 5 residual biomasses from Maranhão (Brazil) were investigted as supports for immobilization of lipase from Thermomyces lanuginosus (TLL). The new biocatalysts BM-TLL (babaçu mesocarp) and RH-TLL (rice husk) showed immobilization efficiencies >98% and hydrolytic activities of 5,331 U.g-1 and 4.608 U. g-1 respectively against 142 U. g-1 by Lipozyme® TL IM. High esterification activities were also found, with 141.4 U.g-1 and 396.4 U.g-1 from BM-TLL and RH-TLL against 113.5 U.g-1 by TL IM. Results of porosimetry, SEM and BET demonstrated BM and RH supports are mesoporous materials with large hydrophobic area, allowing a mixture of hydrophobic adsorption and confinement, resulting in hyperactivation of TLL. These biocatalysts were applied in the production of hexyl laurate, where RH-TLL was able to generate 94% conversion in 4 h. Desorption with Triton X-100 and NaCl confirmed that new biocatalysts were more efficient with 5 times less protein than commercial TL IM. All results demonstrated that residual biomass was able to produce robust and stable biocatalysts containing immobilized TLL with better results than commercial preparations.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.