Working Paper Article Version 1 This version is not peer-reviewed

A Stepwise GIS Approach for the Delineation of River Valley Bottom within Drainage Basins Using a Cost Distance Accumulation Analysis

Version 1 : Received: 27 February 2021 / Approved: 1 March 2021 / Online: 1 March 2021 (13:50:04 CET)

A peer-reviewed article of this Preprint also exists.

Sechu, G.L.; Nilsson, B.; Iversen, B.V.; Greve, M.B.; Børgesen, C.D.; Greve, M.H. A Stepwise GIS Approach for the Delineation of River Valley Bottom within Drainage Basins Using a Cost Distance Accumulation Analysis. Water 2021, 13, 827. Sechu, G.L.; Nilsson, B.; Iversen, B.V.; Greve, M.B.; Børgesen, C.D.; Greve, M.H. A Stepwise GIS Approach for the Delineation of River Valley Bottom within Drainage Basins Using a Cost Distance Accumulation Analysis. Water 2021, 13, 827.

Abstract

River valley bottoms have hydrological, geomorphological, and ecological importance and are buffers for protecting the river from upland nutrient loading coming from agriculture and other sources. They are relatively flat, low-lying areas of the terrain that are adjacent to the river and bound by increasing slopes at the transition to the uplands. These areas have under natural conditions, a groundwater table close to the soil surface. The objective of this paper is to present a stepwise GIS approach for the delineation of river valley bottom within drainage basins and use it to perform a national delineation. We developed a tool that applies a concept called cost distance accumulation with spatial data inputs consisting a river network and slope derived from a digital elevation model. We then used wetlands adjacent to rivers as a guide finding the river valley bottom boundary from the cost distance accumulation. We present results from our tool for the whole country of Denmark carrying out a validation within three selected areas. The results reveal that the tool visually performs well and delineates both confined and unconfined river valleys within the same drainage basin. We use the most common forms of wetlands (meadow and marsh) in Denmark's river valleys known as Groundwater Dependent Ecosystems (GDE) to validate our river valley bottom delineated areas. Our delineation picks about half to two-thirds of these GDE. However, we expected this since farmers have reclaimed Denmark's low-lying areas during the last 200 years before the first map of GDE was created. Our tool can be used as a management tool, since it can delineate an area that has been the focus of management actions to protect waterways from upland nutrient pollution.

Keywords

river valley bottom; GIS; cost distance accumulation; groundwater dependent ecosystems

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.