Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Investigations on Dynamical Stability in 3D Quadrupole Ion Traps

Version 1 : Received: 24 February 2021 / Approved: 25 February 2021 / Online: 25 February 2021 (13:39:56 CET)
Version 2 : Received: 23 March 2021 / Approved: 23 March 2021 / Online: 23 March 2021 (12:52:31 CET)

A peer-reviewed article of this Preprint also exists.

Journal reference: Appl. Sci. 2021, 11, 2938
DOI: 10.3390/app11072938


We firstly discuss classical stability for a dynamical system of two ions levitated in a 3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. The system dynamics is characterized using a well established model that relies on two control parameters: the axial angular moment and the ratio between the radial and axial trap pseudo-oscillator characteristic frequencies. We augment this model and employ the Hessian matrix of the potential function in an attempt to better describe dynamical stability and the critical points. Our approach is then used to explore quantum stability in case of strongly coupled Coulomb many-body systems and establish a technique aimed at determining the critical points. Finally, we apply the model in case of a 3D Quadrupole Ion Trap (QIT) with axial symmetry, for which we obtain the associated Hamilton function. A different approach is used to better characterize many-body dynamics in combined (Paul and Penning) traps, with applications such as stable trapping of antimatter or fundamental tests of the Standard Model. The ion distribution can be described by means of numerical modeling, based on the Hamilton function we assign to the system. The approach we introduce is effective to infer the parameters of distinct types of traps by applying a cohesive method.


radiofrequency trap; dynamical stability; eigenfrequency; Paul and Penning trap; Hessian matrix; Hamilton function; bifurcation diagram



Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.

We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.