Preprint
Article

This version is not peer-reviewed.

Investigations on Dynamical Stability in 3D Quadrupole Ion Traps

A peer-reviewed article of this preprint also exists.

Submitted:

24 February 2021

Posted:

25 February 2021

Read the latest preprint version here

Abstract
We firstly discuss classical stability for a dynamical system of two ions levitated in a 3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. The system dynamics is characterized using a well established model that relies on two control parameters: the axial angular moment and the ratio between the radial and axial trap pseudo-oscillator characteristic frequencies. We augment this model and employ the Hessian matrix of the potential function in an attempt to better describe dynamical stability and the critical points. Our approach is then used to explore quantum stability in case of strongly coupled Coulomb many-body systems and establish a technique aimed at determining the critical points. Finally, we apply the model in case of a 3D Quadrupole Ion Trap (QIT) with axial symmetry, for which we obtain the associated Hamilton function. A different approach is used to better characterize many-body dynamics in combined (Paul and Penning) traps, with applications such as stable trapping of antimatter or fundamental tests of the Standard Model. The ion distribution can be described by means of numerical modeling, based on the Hamilton function we assign to the system. The approach we introduce is effective to infer the parameters of distinct types of traps by applying a cohesive method.
Keywords: 
;  ;  ;  ;  ;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated