Submitted:
27 August 2024
Posted:
30 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Solutions of the Mathieu-Hill Equation
-
One chooses a solution expressed as , where is the complex conjugate of so thatA double differentiation with respect to yields:Eq. (13) is also verified for the complex conjugate . Then, one uses eqs. (11) and (12) which are introduced in eq. (13) to further deriveEq. (14) can also be cast asOne uses [82,83,84,85]and finally, by performing the calculus in eq (14) with , one infers the following system of equationsUsing this system of equations, one can determine the coefficients , and , respectively. Hence, one determines the solution from eq. (10) and implicitly the solution x in eq. (8). We demonstrate that an ion confined within an electrodynamic trap can be treated as a HO and derive the associated MH equation of motion.
Discussion
3. Stability Diagram of the MH Equation
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| 2D | 2-Dimensional |
| 3D | 3-Dimensional |
| BSM | Beyond the Standard Model |
| DIT | Digital Ion Trap |
| EIT | Electrodynamic Ion Trap |
| ESI-MS | Electrospray Mass Spectrometry |
| HO | Harmonic Oscillator |
| IT | Ion Trap |
| KZ | Kibble-Zurek |
| LIT | Linear Ion Trap |
| LPT | Linear Paul Trap |
| MD | Molecular Dynamics |
| MS | Mass Spectrometry |
| PO | Parametric Oscillator |
| QIP | Quantum Information Processing |
| RF | Radiofrequency |
| SATP | Standard Atmospheric Temperature and Pressure |
| TDVP | Time Dependent Variational Principle |
Appendix A. Harmonic Oscillator (HO)
Appendix A.1. Harmonic Oscillator with Damping
-
Case 1Then, a solution of eq. (A2) iswhich describes damped oscillations that are non-periodical, with constants of integration.
-
Case 2In such case the solution is expressed aswith constants.
-
Case 3Thenandwith and is the complex conjugate of . Considering thateq. (A11) can be cast aswith constants.
Appendix B. Parametric Harmonic Oscillator. Floquet’s Coefficient. Hill’s Method
Appendix B.1. Hill’s Method
- (pure imaginary) and
- the frontiers of the stability domains are defined by (not integer)
- the associated dynamics is unstable when or , with
Appendix B.2. Electrodynamic Ion Traps (EIT) Operating under SATP Conditions. Damping Case
References
- Blümel, R.; Kappler, C.; Quint, W.; Walther, H. Chaos and order of laser-cooled ions in a Paul trap. Phys. Rev. A 1989, 40, 808–823. [Google Scholar] [CrossRef]
- Mihalcea, B.M. Mathieu–Hill Equation Stability Analysis for Trapped Ions: Anharmonic Corrections for Nonlinear Electrodynamic Traps. Photonics 2024, 11, 551. [Google Scholar] [CrossRef]
- Brouwers, J.J.H. Asymptotic solutions for Mathieu instability under random parametric excitation and nonlinear damping. Physica D 2011, 240, 990–1000. [Google Scholar] [CrossRef]
- Chaki, S.; Bhattacherjee, A. Role of dissipation in the stability of a parametrically driven quantum harmonic oscillator. J. Korean Phy. Soc. 2021, 79, 600–605. [Google Scholar] [CrossRef]
- Nayfeh, A.H.; Mook, D.T. Nonlinear Oscillations; Wiley Classics Library, Wiley-VCH: Weinheim, 2008. [Google Scholar] [CrossRef]
- Kovacic, I.; Brenner, M.J. (Eds.) The Duffing Equation: Nonlinear Oscillations and their Behaviour; Theoretical, Computational, and Statistical Physics, Wiley: Chichester, West Sussex, 2011. [Google Scholar] [CrossRef]
- Mond, M.; Cederbaum, G.; Khan, P.B.; Zarmi, Y. Stability Analysis Of The Non-Linear Mathieu Equation. J. Sound Vib. 1993, 167, 77–89. [Google Scholar] [CrossRef]
- Nayfeh, A.H.; Balachandran, B. Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods; Wiley Series in Nonlinear Science; Wiley-VCH: Weinheim, 2008. [Google Scholar] [CrossRef]
- Kovacic, I.; Rand, R.; Sah, S.M. Mathieu’s Equation and Its Generalizations: Overview of Stability Charts and Their Features. Appl. Mech. Rev. 2018, 70, 020802. [Google Scholar] [CrossRef]
- El-Dib, Y.O. An innovative efficient approach to solving damped Mathieu–Duffing equation with the non-perturbative technique. Commun. Nonlinear Sci. Numer. Simul. 2024, 128, 107590. [Google Scholar] [CrossRef]
- Rand, R.H. CISM Course: Time-Periodic Systems Sept. 5 - 9, 2016. http://audiophile.tam.cornell.edu/randpdf/rand_mathieu_CISM.pdf.
- Trypogeorgos, D.; Foot, C.J. Cotrapping different species in ion traps using multiple radio frequencies. Phys. Rev. A 2016, 94, 023609. [Google Scholar] [CrossRef]
- Tibaduiza, D.M.; Pires, L.; Rego, A.L.C.; Szilard, D.; Zarro, C.; Farina, C. Efficient algebraic solution for a time-dependent quantum harmonic oscillator. Phys. Scr. 2020, 95, 105102. [Google Scholar] [CrossRef]
- Xiong, C.; Zhou, X.; Zhang, N.; Zhan, L.; Chen, Y.; Nie, Z. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect. J. Am. Soc. Mass Spectrom. 2016, 27, 344–351. [Google Scholar] [CrossRef]
- Foot, C.J.; Trypogeorgos, D.; Bentine, E.; Gardner, A.; Keller, M. Two-frequency operation of a Paul trap to optimise confinement of two species of ions. Int. J. Mass. Spectrom. 2018, 430, 117–125. [Google Scholar] [CrossRef]
- Londry, F.A.; Hager, J.W. Mass selective axial ion ejection from a linear quadrupole ion trap. J. Am. Soc. Mass Spectrom. 2003, 14, 1130–1147. [Google Scholar] [CrossRef]
- Reece, M.P.; Huntley, A.P.; Moon, A.M.; Reilly, P.T.A. Digital Mass Analysis in a Linear Ion Trap without Auxiliary Waveforms. J. Am. Soc. Mass Spectrom. 2019, 31, 103–108. [Google Scholar] [CrossRef]
- Schmidt, J.; Hönig, D.; Weckesser, P.; Thielemann, F.; Schaetz, T.; Karpa, L. Mass-selective removal of ions from Paul traps using parametric excitation. Appl. Phys.B 2020, 126, 176. [Google Scholar] [CrossRef]
- Combescure, M. The quantum stability problem for some class of time-dependent hamiltonians. Ann. Phys. (N. Y.) 1988, 185, 86–110. [Google Scholar] [CrossRef]
- Stenholm, S. Quantum Motion in a Paul Trap. J. Mod. Optics 1992, 39, 279–290. [Google Scholar] [CrossRef]
- Glauber, R.J. The Quantum Mechanics of Particles in Time-Dependent Quadrupole Fields. In Recent Developments in Quantum Optics; Inguva, R., Ed.; Plenum Press: New York, N. Y, 1993. [Google Scholar]
- Gardiner, S.A.; Cirac, J.I.; Zoller, P. Quantum Chaos in an Ion Trap: The Delta-Kicked Harmonic Oscillator. Phys. Rev. Lett. 1997, 79, 4790–4793. [Google Scholar] [CrossRef]
- Pedrosa, I.A.; Rosas, A.; Guedes, I. Exact quantum motion of a particle trapped by oscillating fields. J. Phys. A: Math. Gen. 2005, 38, 7757–7763. [Google Scholar] [CrossRef]
- Menicucci, N.C.; Milburn, G.J. Single trapped ion as a time-dependent harmonic oscillator. Phys. Rev. A 2007, 76, 052105. [Google Scholar] [CrossRef]
- Mihalcea, B.M. Nonlinear harmonic boson oscillator. Phys. Scr. 2010, T140, 014056. [Google Scholar] [CrossRef]
- Wittemer, M.; Schröder, J.P.; Hakelberg, F.; Kiefer, P.; Fey, C.; Schuetzhold, R.; Warring, U.; Schaetz, T. Trapped-ion toolkit for studies of quantum harmonic oscillators under extreme conditions. Phil. Trans. R. Soc. A 2020, 378, 20190230. [Google Scholar] [CrossRef]
- Keller, J.; Hou, P.Y.; McCormick, K.C.; Cole, D.C.; Erickson, S.D.; Wu, J.J.; Wilson, A.C.; Leibfried, D. Quantum Harmonic Oscillator Spectrum Analyzers. Phys. Rev. Lett. 2021, 126, 250507. [Google Scholar] [CrossRef]
- Mihalcea, B.M. Quasienergy operators and generalized squeezed states for systems of trapped ions. Ann. Phys. (N. Y.) 2022, 442, 169826. [Google Scholar] [CrossRef]
- Coelho, S.S.; Queiroz, L.; Alves, D.T. Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis-Riesenfeld Dynamical Invariant Method. Entropy 2022, 24. [Google Scholar] [CrossRef]
- García Herrera, E.; Torres-Leal, F.; Rodríguez-Lara, B.M. Continuous-time quantum harmonic oscillator state engineering. New J. Phys. 2023, 25, 123045. [Google Scholar] [CrossRef]
- Kato, A.; Goel, A.; Lee, R.; Ye, Z.; Karki, S.; Liu, J.J.; Nomerotski, A.; Blinov, B.B. Two-tone Doppler cooling of radial two-dimensional crystals in a radio-frequency ion trap. Phys. Rev. A 2022, 105, 023101. [Google Scholar] [CrossRef]
- Hong, J.; Kim, M.; Lee, H.; Lee, M. Numerical investigation of a segmented-blade ion trap with biasing rods. Appl. Phys. B 2022, 129, 16. [Google Scholar] [CrossRef]
- Colombo, S.; Pedrozo-Peñafiel, E.; Adiyatullin, A.F.; Li, Z.; Mendez, E.; Shu, C.; Vuletić, V. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 2022, 18, 925–930. [Google Scholar] [CrossRef]
- Wineland, D.J. Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 2013, 85, 1103–1114. [Google Scholar] [CrossRef]
- Wolf, F.; Shi, C.; Heip, J.C.; Gessner, M.; Pezzè, L.; Smerzi, A.; Schulte, M.; Hammerer, K.; Schmidt, P.O. Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions. Nat. Commun. 2019, 10, 2929. [Google Scholar] [CrossRef]
- Lamata, L.; Mezzacapo, A.; Casanova, J.; Solano, E. A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock. EPJ Quantum Technol. 2014, 1, 9. [Google Scholar] [CrossRef]
- Martínez-Lahuerta, V.J.; Eilers, S.; Mehlstäubler, T.E.; Schmidt, P.O.; Hammerer, K. Ab initio quantum theory of mass defect and time dilation in trapped-ion optical clocks. Phys. Rev. A 2022, 106, 032803. [Google Scholar] [CrossRef]
- Leibrandt, David R. Porsev, S.G.; Cheung, C.; Safronova, M.S. Prospects of a thousand-ion Sn2+ Coulomb-crystal clock with sub-10-19 inaccuracy. Nat. Comm. 2024, 15, 5663. [Google Scholar] [CrossRef]
- Barontini, G.; Boyer, V.; Calmet, X.; Fitch, N.J.; Forgan, E.M.; Godun, R.M.; Goldwin, J.; Guarrera, V.; Hill, I.R.; Jeong, M.; Keller, M.; Kuipers, F.; Margolis, H.S.; Newman, P.; Prokhorov, L.; Rodewald, J.; Sauer, B.E.; Schioppo, M.; Sherrill, N.; Tarbutt, M.R.; Vecchio, A.; Worm, S. QSNET, a network of clock for measuring the stability of fundamental constants. Quantum Technology: Driving Commercialisation of an Enabling Science II; Padgett, M.J.; Bongs, K.; Fedrizzi, A.; Politi, A., Eds. International Society for Optics and Photonics, SPIE, 2021, Vol. 11881, pp. 63 – 66. [CrossRef]
- Schkolnik, V.; Budker, D.; Fartmann, O.; Flambaum, V.; Hollberg, L.; Kalaydzhyan, T.; Kolkowitz, S.; Krutzik, M.; Ludlow, A.; Newbury, N.; Pyrlik, C.; Sinclair, L.; Stadnik, Y.; Tietje, I.; Ye, J.; Williams, J. Optical atomic clock aboard an Earth-orbiting space station (OACESS): enhancing searches for physics beyond the standard model in space. Quantum Sci. Technol. 2022, 8, 014003. [Google Scholar] [CrossRef]
- Tsai, Y.D.; Eby, J.; Safronova, M.S. Direct detection of ultralight dark matter bound to the Sun with space quantum sensors. Nat. Astron. 2023, 7, 113–121. [Google Scholar] [CrossRef]
- Reiter, F.; Sørensen, A.S.; Zoller, P.; Muschik, C.A. Dissipative quantum error correction and application to quantum sensing with trapped ions. Nature Comm. 2017, 8, 1822. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R.; Leduc, M.; Perrin, H. (Eds.) Ultra-Cold Atoms, Ions, Molecules and Quantum Technologies; EDP Sciences: 91944 Les Ulis Cedex A, France, 2022. [Google Scholar] [CrossRef]
- Okada, K.; Wada, M.; Takayanagi, T.; Ohtani, S.; Schuessler, H.A. Characterization of ion Coulomb crystals in a linear Paul trap. Phys. Rev. A 2010, 81, 013420. [Google Scholar] [CrossRef]
- Bahrami, A.; Müller, M.; Drechsler, M.; Joger, J.; Gerritsma, R.; Schmidt-Kaler, F. Operation of a Microfabricated Planar Ion-Trap for Studies of a Yb+–Rb Hybrid Quantum System. Phys. Status Solidi B 2019, 256, 1800647. [Google Scholar] [CrossRef]
- Perego, E.; Duca, L.; Sias, C. Electro-Optical Ion Trap for Experiments with Atom-Ion Quantum Hybrid Systems. Appl. Sci. 2020, 10, 2222. [Google Scholar] [CrossRef]
- Niranjan, M.; Prakash, A.; Rangwala, S.A. Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments. Atoms 2021, 9, 38. [Google Scholar] [CrossRef]
- Vilasi, G. Hamiltonian Dynamics; World Scientific, 2001. [CrossRef]
- Mihalcea, B.M. Study of quasiclassical dynamics of trapped ions using the coherent state formalism and associated algebraic groups. Rom. J. Phys. 2017, 62, 113. [Google Scholar]
- Onah, F.E.; Garcíía Herrera, E.; Ruelas-Galván, J.A.; Juárez Rangel, G.; Real Norzagaray, E.; Rodríguez-Lara, B.M. A quadratic time-dependent quantum harmonic oscillator. Sci. Rep. 2023, 13, 8312. [Google Scholar] [CrossRef]
- Mihalcea, B.M.; Vişan, G.G. Nonlinear ion trap stability analysis. Phys. Scr. 2010, T140, 014057. [Google Scholar] [CrossRef]
- Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R. Single-ion nonlinear mechanical oscillator. Phys. Rev. A 2010, 82, 061402. [Google Scholar] [CrossRef]
- Lemmer, A.; Plenio, M.B.; Bermudez, A. Noise studies of driven geometric phase gates with trapped ions. Ion Traps for Tomorrow’s Applications; Knoop, M.; Marzoli, I.; Morigi, G., Eds. International School of Physics “Enrico Fermi”, Inst. of Physics, Amsterdam, and Societa Italiana di Fisica, Bologna, 2015, Vol. 189, pp. 229 – 244. [CrossRef]
- Wang, Y.X.; Liu, S.C.; Cheng, L.; Peng, L.Y. Systematic investigations on ion dynamics with noises in Paul trap. J. Phys. A: Math. Theor. 2023, 56, 465302. [Google Scholar] [CrossRef]
- Brillouin, L. A practical method for solving Hill’s equation. Quart. Appl. Math. 1948, 6, 167–178. [Google Scholar] [CrossRef]
- Magnus, W.; Winkler, S. Hill’s Equation; Vol. 20, Interscience Tracts in Pure and Applied Mathematics, Wiley: New York, 1966. [Google Scholar] [CrossRef]
- Wolf, G. Mathieu Functions and Hill’s Equation. In NIST Handbook of Mathematical Functions; Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W., Eds.; NIST & Cambridge Univ. Press: New York, NY, 2010. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 5th ed.; Moll, V.H., Ed.; Cambridge Univ. Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Major, F.G.; Gheorghe, V.N.; Werth, G. Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement; Vol. 37, Springer Series on Atomic, Optical and Plasma Physics; Springer: Berlin, Heidelberg, 2005. [Google Scholar] [CrossRef]
- Knoop, M.; Madsen, N.; Thompson, R.C. (Eds.) Physics with Trapped Charged Particles: Lectures from the Les Houches Winter School; Imperial College Press & World Scientific: London, 2014. [Google Scholar] [CrossRef]
- Knoop, M.; Marzoli, I.; Morigi, G. (Eds.) Ion Traps for Tomorrow Applications; Vol. 189, Proc. Int. School of Physics Enrico Fermi, Società Italiana di Fisica and IOS Press: Bologna, 2015. [Google Scholar]
- Kajita, M. Ion Traps; IOP Publishing, 2022. [CrossRef]
- Drewsen, M. Ion Coulomb crystals and their applications. Ion Traps for Tomorrow’s Applications; Knoop, M.; Marzoli, I.; Morigi, G., Eds. International School of Physics “Enrico Fermi”, Inst. of Physics, Amsterdam, and Societa Italiana di Fisica, Bologna, 2015, Vol. 189, pp. 81 – 101. [CrossRef]
- Drewsen, M. The linear-zigzag structural transition in cold ion chains. Ion Traps for Tomorrow’s Applications; Knoop, M.; Marzoli, I.; Morigi, G., Eds. International School of Physics “Enrico Fermi”, Inst. of Physics, Amsterdam, and Societa Italiana di Fisica, Bologna, 2015, Vol. 189, pp. 103 – 114. [CrossRef]
- Joshi, M.K.; Fabre, A.; Maier, C.; Brydges, T.; Kiesenhofer, D.; Hainzer, H.; Blatt, R.; Roos, C.F. Polarization-gradient cooling of 1D and 2D ion Coulomb crystals. New J. Phys. 2020, 22, 103013. [Google Scholar] [CrossRef]
- Spivey, R.F.; Inlek, I.V.; Jia, Z.; Crain, S.; Sun, K.; Kim, J.; Vrijsen, G.; Fang, C.; Fitzgerald, C.; Kross, S.; Noel, T.; Kim, J. High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps. IEEE Trans. Quant. Eng. 2022, 3, 1–11. [Google Scholar] [CrossRef]
- Zhukas, L.A.; Millican, M.J.; Svihra, P.; Nomerotski, A.; Blinov, B.B. Direct Observation of Ion Micromotion in a Linear Paul Trap. Phys. Rev. A 2021, 103, 023105. [Google Scholar] [CrossRef]
- Rudyi, S.S.; Romanova, A.V.; Rozhdestvensky, Y.V. Numerical analysis of phase transitions in ion Coulomb crystals. Comput. Part. Mech. 2023. [Google Scholar] [CrossRef]
- Rudyi, S.; Ivanov, A.; Shcherbinin, D. Fractal Quasi-Coulomb Crystals in Ion Trap with Cantor Dust Electrode Configuration. Fractal Fract. 2023, 7. [Google Scholar] [CrossRef]
- Duca, L.; Mizukami, N.; Perego, E.; Inguscio, M.; Sias, C. Orientational Melting in a Mesoscopic System of Charged Particles. Phys. Rev. Lett. 2023, 131, 083602. [Google Scholar] [CrossRef] [PubMed]
- Mihalcea, B.M.; Lynch, S. Investigations on Dynamical Stability in 3D Quadrupole Ion Traps. Appl. Sci. 2021, 11, 2938. [Google Scholar] [CrossRef]
- Farrelly, D.; Howard, J.E. Double-well dynamics of two ions in the Paul and Penning traps. Phys. Rev. A 1994, 49, 1494–1497. [Google Scholar] [CrossRef]
- Burgermeister, T.; Mehlstäubler, T.E. Creation and dynamics of topological defects in ion Coulomb crystals. Ion Traps for Tomorrow’s Applications; Knoop, M.; Marzoli, I.; Morigi, G., Eds. International School of Physics “Enrico Fermi”, Inst. of Physics, Amsterdam, and Societa Italiana di Fisica, Bologna, 2015, Vol. 189, pp. 115 – 125. [CrossRef]
- Wen, W.; Zhu, S.; Xie, Y.; Ou, B.; Wu, W.; Chen, P.; Gong, M.; Guo, G. Generalized Kibble-Zurek mechanism for defects formation in trapped ions. Sci. China: Phys. Mech. Astron. 2023, 66, 280311. [Google Scholar] [CrossRef]
- Blanch, G. On the Computation of Mathieu Functions. J. Mathematics and Physics 1946, 25, 1–20. [Google Scholar] [CrossRef]
- McLachlan, N.W. Theory and application of Mathieu functions; Vol. 1233, Dover Publications: New York, 1964. [Google Scholar]
- Pedregosa-Gutierrez, J.; Champenois, C.; Kamsap, M.R.; Hagel, G.; Houssin, M.; Knoop, M. Symmetry breaking in linear multipole traps. J. Mod. Optics 2018, 65, 529–537. [Google Scholar] [CrossRef]
- Brewer, R.G.; Hoffnagle, J.; DeVoe, R.G.; Reyna, L.; Henshaw, W. Collision-induced two-ion chaos. Nature 1990, 344, 305–309. [Google Scholar] [CrossRef]
- Hoffnagle, J.; Brewer, R.G. On the Frequency-Locked Orbits of Two Particles in a Paul Trap. Science 1994, 265, 213–215. [Google Scholar] [CrossRef]
- Mihalcea, B.M. Squeezed coherent states of motion for ions confined in quadrupole and octupole ion traps. Ann. Phys. (N. Y.) 2018, 388, 100–113. [Google Scholar] [CrossRef]
- Coelho, S.S.; Queiroz, L.; Alves, D.T. Squeezing equivalence of quantum harmonic oscillators under different frequency modulations. Phys. Scr. 2024, 99, 085104. [Google Scholar] [CrossRef]
- Hassani, S. Mathematical Methods: For Students of Physics and Related Fields, 2nd ed.; Physics and Astronomy, Springer: New York, NY, 2009. [Google Scholar] [CrossRef]
- Riley, K.F.; Hobson, M.P. Essential Mathematical Methods for the Physical Sciences; Cambridge Univ. Press: Cambridge, 2011. [Google Scholar]
- Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations, 2nd ed.; Physics and Astronomy, Springer: Cham, 2013. [Google Scholar] [CrossRef]
- Pence, T.J.; Wichman, I.S. Essential Mathematics for Engineers and Scientists; Cambridge Univ. Press: Cambridge, 2020. [Google Scholar] [CrossRef]
- Richards, D. Advanced Mathematical Methods with Maple; Cambridge Univ. Press: Cambridge, 2009. [Google Scholar]
- Kramer, P.; Saraceno, M. (Eds.) Geometry of the Time-Dependent Variational Principle in Quantum Mechanics; Vol. 140, Lecture Notes in Physics, Springer: Berlin, 1981. [Google Scholar] [CrossRef]
- Ceausescu, V.; Gheorghe, A. Classical limit and quantization of hamiltonian systems. Symmetries and Semiclassical Features of Nuclear Dynamics; Raduta, A.A., Ed.; Springer: Berlin, 1987. [Google Scholar] [CrossRef]
- Mihalcea, B. CoherentStates for Trapped Ions: Applications in Quantum Opticsand Precision Measurements. In CPT and Lorentz Symmetry; World Scientific: Singapore, 2023; pp. 192–195. [Google Scholar] [CrossRef]
- Mihalcea, B.M. Semiclassical dynamics for an ion confined within a nonlinear electromagnetic trap. Phys. Scr. 2011, T143, 014018. [Google Scholar] [CrossRef]
- Schlipf, S. From a Single Ion to a Mesoscopic System: Crystalization of Ions in Paul Traps. Coherent and Collective Interactions of Particles and Radiation Beams; Aspect, A.; Barletta, W.; Bonifacio, R., Eds. IOS Press, 1996, Vol. 131, Proc. Int. School Phys. "Enrico Fermi", pp. 61 – 99. [CrossRef]
- Mihalcea, B.M.; Filinov, V.S.; Syrovatka, R.A.; Vasilyak, L.M. The physics and applications of strongly coupled Coulomb systems (plasmas) levitated in electrodynamic traps. Phys. Rep. 2023, 1016, 1–103. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Mathieu Functions; Vol. 55, Appl. Math. Series, US Dept. of Commerce; National Bureau of Standards: Washington, DC, 1972; chapter 20; pp. 722–750. [Google Scholar]
- Bateman, J. Higher transcendental functions; Vol. 3, Robert E. Krieger Publishing: Malabar, Florida, 1981. [Google Scholar]
- Daniel, D.J. Exact solutions of Mathieu’s equation. Prog. Theor. Exp. Phys. 2020, 2020, 043A01. [Google Scholar] [CrossRef]
- Moussa, R.A. Generalization of Ince’s Equation. J. Appl. Math. Phys. 2014, 2, 1171–1182. [Google Scholar] [CrossRef]
- Tibaduiza, D.M.; Pires, L.; Szilard, D.; Zarro, C.A.D.; Farina, C.; Rego, A.L.C. A Time-Dependent Harmonic Oscillator with Two Frequency Jumps: an Exact Algebraic Solution. Brazilian J. Phys. 2020, 50, 634–646. [Google Scholar] [CrossRef]
- Combescure, M. Crystallization of trapped ions—A quantum approach. Ann. Phys. (N. Y.) 1990, 204, 113–123. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I.; Rosa, L. Quantum singular oscillator as a model of a two-ion trap: An amplification of transition probabilities due to small-time variations of the binding potential. Phys. Rev. A 1998, 57, 2851–2858. [Google Scholar] [CrossRef]
- Lewis, H.R.; Riesenfeld, W.B. An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. J. Math. Phys. 1969, 10, 1458–1473. [Google Scholar] [CrossRef]
- Landa, H.; Drewsen, M.; Reznik, B.; Retzker, A. Classical and quantum modes of coupled Mathieu equations. J. Phys. A: Math. Theor. 2012, 45, 455305. [Google Scholar] [CrossRef]
- Mihalcea, B.M. A quantum parametric oscillator in a radiofrequency trap. Phys. Scr. 2009, T135, 014006. [Google Scholar] [CrossRef]
- Sträng, J.E. On the characteristic exponents of Floquet solutions to the Mathieu equation. Bull. Acad. R. Belg. 2005, 16, 269–287. [Google Scholar] [CrossRef]
- Jones, T. Mathieu’s Equations and the ideal RF-Paul Trap. http://einstein.drexel.edu/~tim/open/mat/mat.pdf, accessed on 21. 05. 2024.
- Sevugarajan, S.; Menon, A.G. Transition curves and iso-βu lines in nonlinear Paul traps. Int. J. Mass Spectrom. 2002, 218, 181–196. [Google Scholar] [CrossRef]
- Peik, E. Optical Atomic Clocks. In Photonic Quantum Technologies; Benyoucef, M., Ed.; Wiley, 2023; chapter 14, pp. 333 – 348. [CrossRef]
- Katz, O.; Cetina, M.; Monroe, C. Programmable N-Body Interactions with Trapped Ions. PRX Quantum 2023, 4, 030311. [Google Scholar] [CrossRef]
- Spampinato, A.; Stacey, J.; Mulholland, S.; Robertson, B.I.; Klein, H.A.; Huang, G.; Barwood, G.P.; Gill, P. An ion trap design for a space-deployable strontium-ion optical clock. Proc. R. Soc. A 2024, 480, 20230593. [Google Scholar] [CrossRef]
- van Eijkelenborg, M.A.; Dholakia, K.; Storkey, M.E.M.; Segal, D.M.; Thompson, R.C. A driven, trapped, laser cooled ion cloud: a forced damped oscillator. Opt. Commun. 1999, 159, 169–176. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W. Lie transformation method on quantum state evolution of a general time-dependent driven and damped parametric oscillator. Ann. Phys. 2016, 373, 424–455. [Google Scholar] [CrossRef]
- Weyl, H. Meromorphic Functions and Analytic Curves; Vol. 12, Annals of Mathematics Studies, Princeton Univ. Press - De Gruyter: New Jersey, 2016. [Google Scholar] [CrossRef]
- Moore, M.; Blümel, R. Quantum manifestations of order and chaos in the Paul trap. Phys. Rev. A 1993, 48, 3082–3091. [Google Scholar] [CrossRef]
- Hoffnagle, J.A.; Brewer, R.G. Stability of two-ion crystals in the Paul trap: A comparison of exact and pseudopotential calculations. Appl. Phys. B 1995, 60, 113–117. [Google Scholar] [CrossRef]
- Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 1990, 62, 531–540. [Google Scholar] [CrossRef]
- Blümel, R. Nonlinear dynamics of trapped ions. Phys. Scr. 1995, T59, 369–379. [Google Scholar] [CrossRef]
- Blümel, R.; Bonneville, E.; Carmichael, A. Chaos and bifurcations in ion traps of cylindrical and spherical design. Phys. Rev. E 1998, 57, 1511–1518. [Google Scholar] [CrossRef]
- Tandel, D.D.; Chatterjee, A.; Mohanty, A.K. Quadrupole ion trap with dipolar DC excitation: motivation, nonlinear dynamics, and simple formulas. Nonlin. Dyn. 2023, 111, 15837–15852. [Google Scholar] [CrossRef]
- Affolter, M.; Ge, W.; Bullock, B.; Burd, S.C.; Gilmore, K.A.; Lilieholm, J.F.; Carter, A.L.; Bollinger, J.J. Toward improved quantum simulations and sensing with trapped two-dimensional ion crystals via parametric amplification. Phys. Rev. A 2023, 107, 032425. [Google Scholar] [CrossRef]
- Gheorghe, V.N.; Giurgiu, L.; Stoican, O.; Cacicovschi, D.; Molnar, R.; Mihalcea, B. Ordered Structures in a Variable Length AC Trap. Acta Phys. Pol. A 1998, 93, 625–629. [Google Scholar] [CrossRef]
- Kulkarni, P.; Baron, P.A.; Willeke, K. (Eds.) Aerosol Measurement: Principles, Techniques and Applications, 3rd ed.; Wiley: Hoboken, New Jersey, 2011. [Google Scholar] [CrossRef]
- Syrovatka, R.A.; Filinov, V.S.; Vasilyak, L.M.; Pecherkin, V.Y.; Deputatova, L.V.; Vladimirov, V.I.; Popel, O.S.; Tarasenko, A.B. Cleaning dielectric surfaces by the electrical fields of the linear electrodynamic Paul trap. J. Electrostat. 2021, 112, 103583. [Google Scholar] [CrossRef]
- Rybin, V.; Shcherbinin, D.; Semynin, M.; Gavenchuk, A.; Zakharov, V.; Ivanov, A.; Rozhdestvensky, Y.; Rudyi, S. Novel nonlinear damping identification method: Simultaneous size, mass, charge and density measurements of a microparticle in quadrupole trap. Powder Technol. 2023, 427, 118717. [Google Scholar] [CrossRef]
- Winter, H.; Ortjohann, H.W. Simple demonstration of storing macroscopic particles in a "Paul trap". Am. J. Phys. 1991, 59, 807–813. [Google Scholar] [CrossRef]
- Hasegawa, T.; Uehara, K. Dynamics of a single particle in a Paul trap in the presence of the damping force. Appl. Phys. B 1995, 61, 159–163. [Google Scholar] [CrossRef]
- Mihalcea, B.M.; Visan, G.T.; Giurgiu, L.C.; Radan, S. Optimization of ion trap geometries and of the signal to noise ratio for high resolution spectroscopy. J. Optoelectron. Adv. Mat. 2008, 10, 1994–1998. [Google Scholar]
- Rudyi, S.S.; Vovk, T.A.; Kosternoi, I.A.; Rybin, V.V.; Rozhdestvensky, Y.V. Single-phase multipole radiofrequency trap. AIP Adv. 2020, 10, 085016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
