Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Increasing the Quality Factor (Q) of 1D Photonic Crystal Cavity with an End Loop-Mirror

Version 1 : Received: 7 February 2021 / Approved: 8 February 2021 / Online: 8 February 2021 (13:25:38 CET)

A peer-reviewed article of this Preprint also exists.

Haron, M.H.; Yeop Majlis, B.; Zain, A.R.M. Increasing the Quality Factor (Q) of 1D Photonic Crystal Cavity with an End Loop-Mirror. Photonics 2021, 8, 99. Haron, M.H.; Yeop Majlis, B.; Zain, A.R.M. Increasing the Quality Factor (Q) of 1D Photonic Crystal Cavity with an End Loop-Mirror. Photonics 2021, 8, 99.

Abstract

Increasing the quality factor (Q) of an optical resonator device has been a research focus to be utilized in various applications. Higher Q-factor means light is confined in a longer time which will produce a shaper peak and higher transmission. In this paper, we introduce a novel technique to increase further the Q-factor of a one-dimensional photonic crystal (1D PhC) cavity device by using an end loop-mirror (ELM). The technique utilizes and recycles the light transmission from the conventional 1D PhC cavity design. The design has been proved to work by using the 2.5D FDTD simulation with Lumerical FDTD and MODE softwares. By using the ELM technique, the Q- factor of a 1D PhC design has been shown to have increased up to 79.53 % from the initial Q value without the ELM. This novel design technique can be combined with any high Q-factor and very high Q-factor designs to increase more the Q-factor value of a photonic crystal cavity devices or any other suitable optical resonator devices. The experimental result shows that the device is measurable by adding a Y-branch component to the one-port structure and able to get the high-Q result.

Keywords

Photonic crystal cavity; High Q-factor; loss reduction; SOI

Subject

Physical Sciences, Acoustics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.