Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Geodetic-Gravimetric Monitoring of Mountain Uplift and Hydrological Variations at Zugspitze and Wank Mountains (Bavarian Alps, Germany)

Version 1 : Received: 7 February 2021 / Approved: 8 February 2021 / Online: 8 February 2021 (13:06:06 CET)

A peer-reviewed article of this Preprint also exists.

Timmen, L.; Gerlach, C.; Rehm, T.; Völksen, C.; Voigt, C. Geodetic-Gravimetric Monitoring of Mountain Uplift and Hydrological Variations at Zugspitze and Wank Mountains (Bavarian Alps, Germany). Remote Sens. 2021, 13, 918. Timmen, L.; Gerlach, C.; Rehm, T.; Völksen, C.; Voigt, C. Geodetic-Gravimetric Monitoring of Mountain Uplift and Hydrological Variations at Zugspitze and Wank Mountains (Bavarian Alps, Germany). Remote Sens. 2021, 13, 918.

Journal reference: Remote Sens. 2021, 13, 918
DOI: 10.3390/rs13050918

Abstract

In 2004, first absolute gravity (AG) measurements were performed on the mountain tops of Mt. Zugspitze (2 sites) and Mt. Wank (1 site), and at the Wank foot (1 site). Wank (summit height 1780 m) and Zugspitze (2960 m) are about 20 km apart from each other and belong geologically to different parts of the Northern Limestone Alps. Bridging a time span of 15 years, the deduced gravity variations for Zugspitze are in the order of 0.30 μm/s² with a standard uncertainty of 0.04 μm/s². The Wank stations (foot and top) show no significant gravity variation. The vertical stability of Wank summit is also confirmed by results of continuous GNSS recordings. Because an Alpine mountain uplift of 1 or 2 mm/yr cannot explain the obtained gravity decline at Zugspitze, the dominating geophysical contributions are assumed to be due to the diminishing glaciers in the vicinity. The modelled gravity trend caused by glacier retreat between epochs 1999 and 2018 amounts to -0.012 μm/s²/yr at both Zugspitze AG sites. This explains more than half of the observed gravity decrease. Long-term variations on inter-annual and climate-relevant decadal scale will be investigated in the future using as a supplement superconducting gravimetry (installed in 2019) and GNSS equipment (since 2018).

Keywords

absolute gravimetry; Mt. Zugspitze; Mt. Wank; gravity variation; superconducting gravimeter; GNSS; FG5 free-fall gravimeter; glacier retreat; Alpine mountain building

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.