Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Multiscale Assessment of Caprock Integrity for Geologic Carbon Storage in the Pennsylvanian Farnsworth Unit, Texas, USA

Version 1 : Received: 2 February 2021 / Approved: 3 February 2021 / Online: 3 February 2021 (15:07:39 CET)

A peer-reviewed article of this Preprint also exists.

Trujillo, N.; Rose-Coss, D.; Heath, J.E.; Dewers, T.A.; Ampomah, W.; Mozley, P.S.; Cather, M. Multiscale Assessment of Caprock Integrity for Geologic Carbon Storage in the Pennsylvanian Farnsworth Unit, Texas, USA. Energies 2021, 14, 5824. Trujillo, N.; Rose-Coss, D.; Heath, J.E.; Dewers, T.A.; Ampomah, W.; Mozley, P.S.; Cather, M. Multiscale Assessment of Caprock Integrity for Geologic Carbon Storage in the Pennsylvanian Farnsworth Unit, Texas, USA. Energies 2021, 14, 5824.

Abstract

The assessment of caprock integrity for underground storage of CO2 and/or enhanced oil recovery (EOR) systems is a multiscale endeavor. Caprock sealing behavior depends on coupled processes that operate over a broad range of length and time scales including nanoscale heterogeneity in capillary and wettability properties to depositional heterogeneity that is basin wide. Larger-scale sedimentary architecture, fractures, and faults can govern properties of potential “seal-bypass” systems that may be difficult to assess. We present a multiscale investigation of geologic sealing integrity of the caprock system that overlies the Morrow B sandstone reservoir, Farnsworth Unit, Texas, USA. The Morrow B sandstone is the target geologic unit for an on-going combined CO2 storage–EOR project by the Southwest Regional Partnership on Carbon Sequestration (SWP). Methods and/or data encompass small-to-large scales, including: petrography using electron and optical microscopy; mercury porosimetry; core examinations of sedimentary architecture and fractures; well logs; a suite of geomechanical testing; and a noble gas profile through sealing lithologies into the reservoir, as preserved from fresh core. The combined data set allows a comprehensive examination of sealing quality by scale, by primary features that control sealing behavior, and an assessment of sealing behavior over geologic time.

Keywords

carbon sequestration; caprock integrity; noble gas migration; seal by-pass

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.