Cabezas, D.; de Bem Oliveira, I.; Acker, M.; Lyrene, P.; Munoz, P.R. Evaluating Wild Germplasm Introgression into Autotetraploid Blueberry. Agronomy2021, 11, 614.
Cabezas, D.; de Bem Oliveira, I.; Acker, M.; Lyrene, P.; Munoz, P.R. Evaluating Wild Germplasm Introgression into Autotetraploid Blueberry. Agronomy 2021, 11, 614.
Cabezas, D.; de Bem Oliveira, I.; Acker, M.; Lyrene, P.; Munoz, P.R. Evaluating Wild Germplasm Introgression into Autotetraploid Blueberry. Agronomy2021, 11, 614.
Cabezas, D.; de Bem Oliveira, I.; Acker, M.; Lyrene, P.; Munoz, P.R. Evaluating Wild Germplasm Introgression into Autotetraploid Blueberry. Agronomy 2021, 11, 614.
Abstract
Wild germplasm can be classified as the raw material essential for crop improvement. Introgression of wild germplasm is normally used in breeding to increase crop quality or resilience to evolving biotic and abiotic threats. Here, we explore the potential of introgressing Vaccinium elliottii into commercial blueberry germplasm. Vaccinium elliottii is a wild diploid blueberry species endemic to the southeastern United States that possesses highly desirable and economically important traits for blueberry breeding such as: short bloom to ripe period, adaptation to upland sandy soils, disease resistance, firmness, and pleasant flavor. To examine the potential of hybridization, we evaluated populations of interspecific hybrids across multiples stages of breeding (i.e., F1, F2, and backcrosses) in two crop seasons. We used our extensive pedigree data to generate breeding values for pre-breeding blueberry hybrid populations. Hybrid performance was evaluated considering fitness (i.e., plant vigor and plant height) in addition to evaluating six fruit-quality and marketable-related traits (i.e., size, firmness, acidity, soluble solids, weight, and yield). Overall, F2 and backcrosses rapidly achieved market thresholds, presenting values not significantly different from commercial blueberry germplasm. Our results confirmed the potential of exploiting the high genetic variability contained in V. elliotii for interspecific hybridization. Additionally, we developed germplasm resources that can be further evaluated and utilized in the breeding process, advancing selections for fruit quality and environmental adaptation.
Keywords
Blueberry; Pre-breeding; hybridization; V. elliottii; Fruit quality
Subject
Biology and Life Sciences, Anatomy and Physiology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.