Preprint
Article

This version is not peer-reviewed.

Derivation of Coulomb's Law Based on a Mechanical Model of Electromagnetic Field and a Spherical Source and Sink Model of Electric Charges

Submitted:

22 January 2021

Posted:

22 January 2021

You are already at the latest version

Abstract
We suppose that vacuum is filled with a kind of continuously distributed matter which may be called the $\Omega(1)$ substratum, or the electromagnetic aether. Suppose that the time scale of a macroscopic observer is very large compares to the the Maxwelllian relaxation time of the $\Omega(1)$ substratum. Thus, the macroscopic observer concludes that the $\Omega(1)$ substratum behaves like a Newtonian-fluid. Inspired by H. A. Lorentz, we speculate that electric charges may be extremely small hard spherical sources or spherical sinks with finite radii. Based on the spherical source and spherical sink model of electric charges, we derive Coulomb's law of interactions between static electric charges in vacuum. Further, we derive a reduced form of the Lorentz's force law for static electric charges in vacuum.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated