Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Groundwater Quality Evolution Model in the Ring of Cenotes, Yucatan, Mexico

Version 1 : Received: 14 January 2021 / Approved: 15 January 2021 / Online: 15 January 2021 (09:48:35 CET)

A peer-reviewed article of this Preprint also exists.

Pérez-Ceballos, R.; Canul-Macario, C.; Pacheco-Castro, R.; Pacheco-Ávila, J.; Euán-Ávila, J.; Merino-Ibarra, M. Regional Hydrogeochemical Evolution of Groundwater in the Ring of Cenotes, Yucatán (Mexico): An Inverse Modelling Approach. Water 2021, 13, 614. Pérez-Ceballos, R.; Canul-Macario, C.; Pacheco-Castro, R.; Pacheco-Ávila, J.; Euán-Ávila, J.; Merino-Ibarra, M. Regional Hydrogeochemical Evolution of Groundwater in the Ring of Cenotes, Yucatán (Mexico): An Inverse Modelling Approach. Water 2021, 13, 614.

Journal reference: Water 2021, 13, 614
DOI: 10.3390/w13050614

Abstract

Karst aquifers show dissolution/precipitation processes of the minerals present in the carbonate rocks. The Ring of Cenotes (RC) extends along the edge of the Chicxulub crater, in the limestone platform of the Yucatan Peninsula (YP), where groundwater shows preferential flow paths toward the coast near Celestun and Dzilam Bravo towns. This study aimed to describe the regional hydrogeochemical evolution of groundwater of the RC, and its association with the dissolution/precipitation of the minerals present along its path to the ocean. To achieve this aim, we: a) characterized groundwater's hydrogeochemistry; b) determined the calcite, dolomite, and gypsum saturation indexes (reaction phases with the groundwater) in the study area; c) proposed a hydrogeochemical model developed through PHREEQC using an inverse modelling approach. The model predictions confirmed that there are two evolution pathways of the groundwater consistent with the preferential flow paths suggested in a previous regionalization of the RC. On the western path, where groundwater flows towards Celestun, an important marine intrusion influences the hydrogeochemical processes and represents a risk for the prevalence of freshwater. On the eastern path, where groundwater flows toward Dzilam Bravo, the hydrogeochemistry in the sinkholes correlates well with rainfall, suggesting a higher vulnerability during droughts than during rainy periods.

Subject Areas

sinkholes; hydrogeochemistry; inverse modelling; rainfall; dissolution; PHREEQC

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.