Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Forest Type and Tree Species Classification of Nemoral Forests With Sentinel-1 and 2 Time Series Data

Version 1 : Received: 11 January 2021 / Approved: 12 January 2021 / Online: 12 January 2021 (17:35:56 CET)

A peer-reviewed article of this Preprint also exists.

Bjerreskov, K.S.; Nord-Larsen, T.; Fensholt, R. Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data. Remote Sens. 2021, 13, 950. Bjerreskov, K.S.; Nord-Larsen, T.; Fensholt, R. Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data. Remote Sens. 2021, 13, 950.

Journal reference: Remote Sens. 2021, 13, 950
DOI: 10.3390/rs13050950

Abstract

Mapping forest extent and forest cover classification are important for the assessment of forest resources in socio-economic as well as ecological terms. Novel developments in the availability of remotely sensed data, computational resources, and advances in areas of statistical learning have enabled fusion of multi-sensor data, often yielding superior classification results. Most former studies of nemoral forests fusing multi-sensor and multi-temporal data have been limited in spatial extent and typically to a simple classification of landscapes into major land cover classes. We hypothesize that multi-temporal, multi-censor data will have a specific strength in further classification of nemoral forest landscapes owing to the distinct seasonal patterns of the phenology of broadleaves. This study aimed to classify the Danish landscape into forest/non-forest and further into forest types (broadleaved/coniferous) and species groups, using a cloud-based approach based on multi-temporal Sentinel 1 and 2 data and machine learning (random forest) trained with National Forest Inventory (NFI) data. Mapping of non-forest and forest resulted in producer accuracies of 99% and 90 %, respectively. The mapping of forest types (broadleaf and conifer) within the forested area resulted in producer accuracies of 95% for conifer and 96% for broadleaf forest. Tree species groups were classified with producer accuracies ranging 34-74%. Species groups with coniferous species were the least confused whereas the broadleaf groups, especially Oak, had higher error rates. The results are applied in Danish National accounting of greenhouse gas emissions from forests, resource assessment and assessment of forest biodiversity potentials.

Subject Areas

forest resources; forest and tree species distribution; machine learning; multi-sensor data fusion; National Forest Inventory data

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.