Preprint
Review

This version is not peer-reviewed.

Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses

A peer-reviewed article of this preprint also exists.

Submitted:

31 December 2020

Posted:

31 December 2020

You are already at the latest version

Abstract
Tricarboxylic acid cycle (TCA) is a series of chemical reactions in aerobic organisms used to generate energy via the oxidation of acetyl-CoA derived from carbohydrates, fatty acids, and proteins. In the eukaryotic system, the TCA cycle completely occurs in mitochondria, while the intermediates of the TCA cycle are retained in mitochondria due to their polarity and hydrophilicity. Under conditions of cell stress, mitochondria become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss their implications for immune activation and suppression.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated