Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Towards a Biomanufactory on Mars

Version 1 : Received: 27 December 2020 / Approved: 29 December 2020 / Online: 29 December 2020 (07:57:37 CET)

How to cite: Berliner, A.; Hilzinger, J.M.; Abel, A.J.; McNulty, M.; Makrygiorgos, G.; Averesch, N.J.; Sen Gupta, S.; Benvenuti, A.; Caddell, D.; Cestellos-Blanco, S.; Doloman, A.; Friedline, S.; Ho, D.; Gu, W.; Hill, A.; Kusuma, P.; Lipsky, I.; Mirkovic, M.; Meraz, J.; Pane, V.; Sander, K.B.; Shi, F.; Skerker, J.M.; Styer, A.; Valgardson, K.; Wetmore, K.; Woo, S.; Xiong, Y.; Yates, K.; Zhang, C.; Zhen, S.; Bugbee, B.; Coleman-Derr, D.; Mesbah, A.; Nandi, S.; Waymouth, R.W.; Yang, P.; Criddle, C.S.; McDonald, K.A.; Menezes, A.A.; Seefeldt, L.C.; Clark, D.S.; Arkin, A.P. Towards a Biomanufactory on Mars. Preprints 2020, 2020120714 (doi: 10.20944/preprints202012.0714.v1). Berliner, A.; Hilzinger, J.M.; Abel, A.J.; McNulty, M.; Makrygiorgos, G.; Averesch, N.J.; Sen Gupta, S.; Benvenuti, A.; Caddell, D.; Cestellos-Blanco, S.; Doloman, A.; Friedline, S.; Ho, D.; Gu, W.; Hill, A.; Kusuma, P.; Lipsky, I.; Mirkovic, M.; Meraz, J.; Pane, V.; Sander, K.B.; Shi, F.; Skerker, J.M.; Styer, A.; Valgardson, K.; Wetmore, K.; Woo, S.; Xiong, Y.; Yates, K.; Zhang, C.; Zhen, S.; Bugbee, B.; Coleman-Derr, D.; Mesbah, A.; Nandi, S.; Waymouth, R.W.; Yang, P.; Criddle, C.S.; McDonald, K.A.; Menezes, A.A.; Seefeldt, L.C.; Clark, D.S.; Arkin, A.P. Towards a Biomanufactory on Mars. Preprints 2020, 2020120714 (doi: 10.20944/preprints202012.0714.v1).

Abstract

A crewed mission to and from Mars may include an exciting array of enabling biotechnologies that leverage inherent mass, power, and volume advantages over traditional abiotic approaches. In this perspective, we articulate the scientific and engineering goals and constraints, along with example systems, that guide the design of a surface biomanufactory. Extending past arguments for exploiting stand-alone elements of biology, we argue for an integrated biomanufacturing plant replete with modules for microbial \textit{in situ} resource utilization, production, and recycling of food, pharmaceuticals, and biomaterials required for sustaining future intrepid astronauts. We also discuss aspirational technology trends in each of these target areas in the context of human and robotic exploration missions in the coming century.

Subject Areas

space systems bioengineering; human exploration; mars; in situ resource utilization; life support systems; biomanufacturing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.