Preprint
Article
Version 1
Preserved in Portico This version is not peer-reviewed
Towards a Biomanufactory on Mars
Aaron Berliner
*
,
Jacob M. Hilzinger
,
Anthony J. Abel
,
Matthew McNulty
,
George Makrygiorgos
,
Nils J.H. Averesch
,
Soumyajit Sen Gupta
,
Alexander Benvenuti
,
Daniel Caddell
,
Stefano Cestellos-Blanco
,
Anna Doloman
,
Skyler Friedline
,
Desiree Ho
,
Wenyu Gu
,
Avery Hill
,
Paul Kusuma
,
Isaac Lipsky
,
Mia Mirkovic
,
Jorge Meraz
,
Vince Pane
,
Kyle B. Sander
,
Fengzhe Shi
,
Jeffrey M. Skerker
,
Alexander Styer
,
Kyle Valgardson
,
Kelly Wetmore
,
Sung-Geun Woo
,
Yongao Xiong
,
Kevin Yates
,
Cindy Zhang
,
Shuyang Zhen
,
Bruce Bugbee
,
Devin Coleman-Derr
,
Ali Mesbah
,
Somen Nandi
,
Robert W. Waymouth
,
Peidong Yang
,
Craig S. Criddle
,
Karen A. McDonald
,
Amor A. Menezes
,
Lance C. Seefeldt
,
Douglas S. Clark
,
Adam P. Arkin
*
Version 1
: Received: 27 December 2020 / Approved: 29 December 2020 / Online: 29 December 2020 (07:57:37 CET)
Berliner, A.; Hilzinger, J.M.; Abel, A.J.; McNulty, M.; Makrygiorgos, G.; Averesch, N.J.; Sen Gupta, S.; Benvenuti, A.; Caddell, D.; Cestellos-Blanco, S.; Doloman, A.; Friedline, S.; Ho, D.; Gu, W.; Hill, A.; Kusuma, P.; Lipsky, I.; Mirkovic, M.; Meraz, J.; Pane, V.; Sander, K.B.; Shi, F.; Skerker, J.M.; Styer, A.; Valgardson, K.; Wetmore, K.; Woo, S.; Xiong, Y.; Yates, K.; Zhang, C.; Zhen, S.; Bugbee, B.; Coleman-Derr, D.; Mesbah, A.; Nandi, S.; Waymouth, R.W.; Yang, P.; Criddle, C.S.; McDonald, K.A.; Menezes, A.A.; Seefeldt, L.C.; Clark, D.S.; Arkin, A.P. Towards a Biomanufactory on Mars. Preprints 2020 , 2020120714 (doi: 10.20944/preprints202012.0714.v1).
Berliner, A.; Hilzinger, J.M.; Abel, A.J.; McNulty, M.; Makrygiorgos, G.; Averesch, N.J.; Sen Gupta, S.; Benvenuti, A.; Caddell, D.; Cestellos-Blanco, S.; Doloman, A.; Friedline, S.; Ho, D.; Gu, W.; Hill, A.; Kusuma, P.; Lipsky, I.; Mirkovic, M.; Meraz, J.; Pane, V.; Sander, K.B.; Shi, F.; Skerker, J.M.; Styer, A.; Valgardson, K.; Wetmore, K.; Woo, S.; Xiong, Y.; Yates, K.; Zhang, C.; Zhen, S.; Bugbee, B.; Coleman-Derr, D.; Mesbah, A.; Nandi, S.; Waymouth, R.W.; Yang, P.; Criddle, C.S.; McDonald, K.A.; Menezes, A.A.; Seefeldt, L.C.; Clark, D.S.; Arkin, A.P. Towards a Biomanufactory on Mars. Preprints 2020, 2020120714 (doi: 10.20944/preprints202012.0714.v1).
Copy
Cite as:
Berliner, A.; Hilzinger, J.M.; Abel, A.J.; McNulty, M.; Makrygiorgos, G.; Averesch, N.J.; Sen Gupta, S.; Benvenuti, A.; Caddell, D.; Cestellos-Blanco, S.; Doloman, A.; Friedline, S.; Ho, D.; Gu, W.; Hill, A.; Kusuma, P.; Lipsky, I.; Mirkovic, M.; Meraz, J.; Pane, V.; Sander, K.B.; Shi, F.; Skerker, J.M.; Styer, A.; Valgardson, K.; Wetmore, K.; Woo, S.; Xiong, Y.; Yates, K.; Zhang, C.; Zhen, S.; Bugbee, B.; Coleman-Derr, D.; Mesbah, A.; Nandi, S.; Waymouth, R.W.; Yang, P.; Criddle, C.S.; McDonald, K.A.; Menezes, A.A.; Seefeldt, L.C.; Clark, D.S.; Arkin, A.P. Towards a Biomanufactory on Mars. Preprints 2020 , 2020120714 (doi: 10.20944/preprints202012.0714.v1).
Berliner, A.; Hilzinger, J.M.; Abel, A.J.; McNulty, M.; Makrygiorgos, G.; Averesch, N.J.; Sen Gupta, S.; Benvenuti, A.; Caddell, D.; Cestellos-Blanco, S.; Doloman, A.; Friedline, S.; Ho, D.; Gu, W.; Hill, A.; Kusuma, P.; Lipsky, I.; Mirkovic, M.; Meraz, J.; Pane, V.; Sander, K.B.; Shi, F.; Skerker, J.M.; Styer, A.; Valgardson, K.; Wetmore, K.; Woo, S.; Xiong, Y.; Yates, K.; Zhang, C.; Zhen, S.; Bugbee, B.; Coleman-Derr, D.; Mesbah, A.; Nandi, S.; Waymouth, R.W.; Yang, P.; Criddle, C.S.; McDonald, K.A.; Menezes, A.A.; Seefeldt, L.C.; Clark, D.S.; Arkin, A.P. Towards a Biomanufactory on Mars. Preprints 2020, 2020120714 (doi: 10.20944/preprints202012.0714.v1).
Copy
CANCEL
COPY CITATION DETAILS
Abstract
A crewed mission to and from Mars may include an exciting array of enabling biotechnologies that leverage inherent mass, power, and volume advantages over traditional abiotic approaches. In this perspective, we articulate the scientific and engineering goals and constraints, along with example systems, that guide the design of a surface biomanufactory. Extending past arguments for exploiting stand-alone elements of biology, we argue for an integrated biomanufacturing plant replete with modules for microbial \textit{in situ} resource utilization, production, and recycling of food, pharmaceuticals, and biomaterials required for sustaining future intrepid astronauts. We also discuss aspirational technology trends in each of these target areas in the context of human and robotic exploration missions in the coming century.
Subject Areas
space systems bioengineering; human exploration; mars; in situ resource utilization; life support systems; biomanufacturing
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (0)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.
what’s this?
Add a record of this review to Publons to track and showcase your reviewing expertise across the world’s journals.
×