Preprint
Article

This version is not peer-reviewed.

A Theoretical Treatment of Memetic Traits Using Gene-Meme, Meme-Meme and Population Equilibrium

Submitted:

24 January 2021

Posted:

26 January 2021

Read the latest preprint version here

Abstract
Background: The term meme includes vertical trait transmission and laterally transmitted ideas that can be lasting or transient. Memes may sometimes follow the logic of population genetics, e.g. learned birdsong, but not when laterally transmitted. Much current work focuses on selection of memes rather than hosts. This paper investigates mathematically the interaction of behaviorally transmitted traits with host selection fitness. Methods: We analyze equilibrium between gene-meme and meme-meme competing propagators and consider whether a meme is linked to reproduction (e.g. vertical culture transmission), or not. We employ a genetic component and combined meme-induced fitness components for hosts, while memes have replication factors to distinguish from what’s good for the host (fitness). We use a Monte Carlo simulation roughly calibrated to the Industrial Revolution to study meme effects on population stability. Results: A basic effective calculus of memetic trait competition and interaction with genes is derived and analyzed. The transient nature of many lateral memes may be a defense against accumulation of deleterious memes. Laterally transmitted (panmictic) memes with high spreading rate will often not equalize with a genetic trait, spreading outside of natural selection of the hosts, presenting a cumulative existential threat. Vertical transmission reduces replication rate and allows group selection against deleterious memes. Competing mutually exclusive memes contribute to inequality and altruism, but compete through adverse fitness since exclusivity assumes low conversion. Conclusions: The advantage of a portfolio of groups or species may not accrue to a single group. This understanding elevates meme-risk to the level of a candidate solution to the so-called Fermi Paradox.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated