Preprint
Article

The Development of a Mitigation System based on a Remote Impoundment

This version is not peer-reviewed.

Submitted:

15 December 2020

Posted:

16 December 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
After the occurrence of a hydrogen fluoride leakage accident that triggered massive losses in Gumi, South Korea in 2012, the government and companies have been interested in installing mitigation systems to minimize the loss of a leakage accident. What lacks in previous researches studying mitigation systems is an evaluation of how much a mitigation system can reduce the impact of accidents. Therefore, modeling-based simulations of mitigation systems should be urgently developed to analysis of the performance of a mitigation system. This study aims to design a mitigation system to handle a leakage accident of a storage tank and determine its design specifications through the use of modeling. The basic concept is that when leakage occurs, leakage material in a dike is drained to a remote impoundment installed under the ground, while the material in the storage vessel is transferred to a reserve tank by a pump at the same time. To evaluate the efficacy of this system. hydrogen fluoride and benzene storage vessels are tested. The simulation results indicate that the proposed mitigation system can contribute to the reduction in the dispersion area for the materials as well as a large reduction in the leakage material.
Keywords: 
Subject: 
Engineering  -   Safety, Risk, Reliability and Quality
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated