Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

ATmospheric LIDar (ATLID): European Space Agency Instrument Ready to Measure Aerosols and Thin Clouds in Atmosphere

Version 1 : Received: 11 December 2020 / Approved: 14 December 2020 / Online: 14 December 2020 (13:11:08 CET)

A peer-reviewed article of this Preprint also exists.

do Carmo, J.P.; de Villele, G.; Wallace, K.; Lefebvre, A.; Ghose, K.; Kanitz, T.; Chassat, F.; Corselle, B.; Belhadj, T.; Bravetti, P. ATmospheric LIDar (ATLID): Pre-Launch Testing and Calibration of the European Space Agency Instrument That Will Measure Aerosols and Thin Clouds in the Atmosphere. Atmosphere 2021, 12, 76. do Carmo, J.P.; de Villele, G.; Wallace, K.; Lefebvre, A.; Ghose, K.; Kanitz, T.; Chassat, F.; Corselle, B.; Belhadj, T.; Bravetti, P. ATmospheric LIDar (ATLID): Pre-Launch Testing and Calibration of the European Space Agency Instrument That Will Measure Aerosols and Thin Clouds in the Atmosphere. Atmosphere 2021, 12, 76.

Journal reference: Atmosphere 2021, 12, 76
DOI: 10.3390/atmos12010076

Abstract

ATLID (ATmospheric LIDar) is the atmospheric backscatter LIDAR (Light Detection and Ranging) on board of the EarthCARE (Earth Cloud, Aerosol and Radiation Explorer) mission, the sixth Earth Explorer Mission of the ESA (European Space Agency) Living Planet Programme [1-5]. ATLID’s purpose is to provide vertical profiles of optically thin cloud and aerosol layers, as well as the altitude of cloud boundaries [6-10]. In order to achieve this objective ATLID emits short duration laser pulses in the UV, at a repetition rate of 51 Hz, while pointing in a near nadir direction along track of the satellite trajectory. The atmospheric backscatter signal is then collected by its 620 mm aperture telescope, filtered through the optics of the instrument focal plane assembly, in order to separate and measure the atmospheric Mie and Rayleigh scattering signals. With the completion of the full instrument assembly in 2019, ATLID has been subjected to an ambient performance test campaign, followed by a successful environmental qualification test campaign, including performance calibration and characterization in thermal vacuum conditions. In this paper the design and operational principle of ATLID is recalled and the major performance test results are presented, addressing the main key receiver and emitter characteristics. Finally, the estimated instrument, in-orbit, flight predictions are presented; these indicate compliance of the ALTID instrument performance against its specification and that it will meet its mission science objectives for the EarthCARE mission, to be launched in 2023.

Subject Areas

LIDAR; UV laser; high spectral resolution; aerosols

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.