The objective of this study was aimed to study the sensory processes of the “human-computer interaction” model when classifying visual images with an incomplete set of signs based on the analysis of early, middle, late and slow components of event-related potentials (ERPs). 26 healthy subjects (men) aged 20-22 years were investigated. ERPs in 19 monopolar sites according to the 10/20 system were recorded. Discriminant and factor analysis were applied. The component N450 is the most specialized indicator of the perception of unrecognizable (oddball) visual images. The amplitude of the ultra-late components N750 and N900 is also higher under conditions of presentation of the oddball image, regardless of the location of the registration points. The results of the study are discussed in the light of the paradigm of the P300 wave application in brain-computer interface systems, as well as with the peculiarities in brain pathology. Promising directions for the development of studies of the “Brain Computer Interface” (BCI) P300 systems are to increase the throughput of information flows. To extend the application of the P300 ERPs to multiple modalities, the underlying physiological mechanisms and responses of the brain for a particular sensory system and mental function must be carefully examined.