Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Maternal Autogenous Inactivated Virus Vaccination Boosts the Piglet Humoral and Cell-Mediated Immunity to PRRSV via Transfer of Neutralizing Antibodies and Interferon-Gamma Producing B Cells

Version 1 : Received: 2 December 2020 / Approved: 3 December 2020 / Online: 3 December 2020 (09:02:58 CET)

A peer-reviewed article of this Preprint also exists.

Kick, A.R.; Wolfe, Z.C.; Amaral, A.F.; Cortes, L.M.; Almond, G.W.; Crisci, E.; Gauger, P.C.; Pittman, J.; Käser, T. Maternal Autogenous Inactivated Virus Vaccination Boosts Immunity to PRRSV in Piglets. Vaccines 2021, 9, 106. Kick, A.R.; Wolfe, Z.C.; Amaral, A.F.; Cortes, L.M.; Almond, G.W.; Crisci, E.; Gauger, P.C.; Pittman, J.; Käser, T. Maternal Autogenous Inactivated Virus Vaccination Boosts Immunity to PRRSV in Piglets. Vaccines 2021, 9, 106.

Abstract

Maternal-derived immunity is a critical component for survival and success of offspring in pigs to protect from circulating pathogens like Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2). The purpose of this study was to investigate the transfer of anti-PRRSV immunity to piglets from gilts that received modified-live virus (MLV) alone (TRT 0), or in combination with one of two autogenous inactivated vaccines (AIVs, TRT 1+2). Piglets from these gilts were challenged with the autogenous PRRSV-2 strain at two weeks of age and their adaptive immune response (IR) was evaluated until 4 weeks post inoculation (wpi). The systemic humoral and cellular IR was analyzed in the pre-farrow gilts, and in piglets, pre-inoculation, and at 2- and 4-wpi. Both AIVs partially protected the piglets with reduced lung pathology and increased weight gain; TRT 1 also lowered piglet viremia best explained by the AIV-induced production of neutralizing antibodies in gilts and their transfer to the piglets. In piglets, pre-inoculation, the main systemic IFN-γ producers were CD21α+ B cells. From 0 to 4 wpi, the role of these B cells declined and CD4 T cells became the primary systemic IFN-γ producers. In lungs, CD8 T cells were the primary and CD4 T cells the secondary IFN-γ producers including a novel subset of porcine CD8α-CCR7- CD4 T cells, potentially terminally differentiated CD4 TEMRA cells. In summary, this study demonstrates that maternal AIV vaccination can improve protection of pre-weaning piglets against PRRSV-2; it shows the importance of transferring neutralizing antibodies to piglets; and it introduces two novel immune cell subsets in pigs – IFN-γ producing CD21α+ B cells and CD8α-CCR7- CD4 T cells.

Keywords

maternal vaccination; autogenous inactivated vaccine; transfer of immunity; humoral immune response; cell-mediated immune response; T cells; PRRSV; swine; IFN-γ producing B cells; CD4 TEMRA cells

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.