Dobrikova, A.; Apostolova, E.; Hanć, A.; Yotsova, E.; Borisova, P.; Sperdouli, I.; Adamakis, I.-D.S.; Moustakas, M. Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc. Plants2021, 10, 194.
Dobrikova, A.; Apostolova, E.; Hanć, A.; Yotsova, E.; Borisova, P.; Sperdouli, I.; Adamakis, I.-D.S.; Moustakas, M. Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc. Plants 2021, 10, 194.
Dobrikova, A.; Apostolova, E.; Hanć, A.; Yotsova, E.; Borisova, P.; Sperdouli, I.; Adamakis, I.-D.S.; Moustakas, M. Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc. Plants2021, 10, 194.
Dobrikova, A.; Apostolova, E.; Hanć, A.; Yotsova, E.; Borisova, P.; Sperdouli, I.; Adamakis, I.-D.S.; Moustakas, M. Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc. Plants 2021, 10, 194.
Abstract
The responses of the aromatic and medicinal plant Salvia sclarea (clary sage) to 900 µM Zn exposure for 8 days in a hydroponic culture were investigated. The tolerance mechanisms under excess Zn exposure were assessed by changes in nutrient uptake, photosynthetic characteristics and leaf structure. The uptake and the distribution of Zn, as well as some essential nutrient elements such as: Ca, Mg, Fe, Mn and Cu, were examined by inductively coupled plasma mass spectrometry (ICP-MS). The results revealed that Salvia sclarea is a Zn accumulator plant that tolerates significantly high toxic levels of Zn in the leaves by increasing the leaf content of Fe, Ca and Mn ions to protect the photosynthetic function and even stimulate photosystem I (PSI) and photosystem II (PSII) activities. Additionally, the leaf photosynthetic pigments and the total phenolic and anthocyanin content were also studied. Data showed that the exposure to excess Zn significantly increases the synthesis of phenolic compounds in the leaves which plays an important role in the Zn detoxification and protection against oxidative stress. Lipid peroxidation and electrolyte leakage in leaves used as clear indicators for heavy metal damage were slightly increased. All these data highlight that Salvia sclarea is an economically interesting plant for phytoextraction and/or phytostabilization of Zn contaminated soils.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.