Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles

Version 1 : Received: 30 November 2020 / Approved: 30 November 2020 / Online: 30 November 2020 (16:20:43 CET)

A peer-reviewed article of this Preprint also exists.

Blazquez-Martín, A.; Verde-Sesto, E.; Moreno, A.J.; Arbe, A.; Colmenero, J.; Pomposo, J.A. Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles. Polymers 2021, 13, 293. Blazquez-Martín, A.; Verde-Sesto, E.; Moreno, A.J.; Arbe, A.; Colmenero, J.; Pomposo, J.A. Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles. Polymers 2021, 13, 293.

Abstract

The folding of certain proteins (e.g., enzymes) into perfectly defined 3D conformations via multi-orthogonal interactions is critical to their function. Concerning synthetic polymers chains, the “folding” of individual polymer chains at high dilution via intra-chain interactions leads to so-called single-chain nanoparticles (SCNPs). This review article describes the advances carried out in recent years in the folding of single polymer chains into discrete SCNPs via multi-orthogonal interactions using different reactive chemical species where intra-chain bonding only occurs between groups of the same species. First, we summarize results from computer simulations of multi-orthogonally folded SCNPs. Next, we comprehensively review multi-orthogonally folded SCNPs synthesized via either non-covalent bonds or covalent interactions. Finally, we conclude by summarizing recent research about multi-orthogonally folded SCNPs prepared through both reversible (dynamic) and permanent bonds.

Keywords

folding; interactions; single-chain nanoparticles

Subject

Chemistry and Materials Science, Biomaterials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.