Article
Version 1
Preserved in Portico This version is not peer-reviewed
Foundations of the Quaternion Quantum Mechanics
Version 1
: Received: 26 November 2020 / Approved: 27 November 2020 / Online: 27 November 2020 (14:23:18 CET)
A peer-reviewed article of this Preprint also exists.
Danielewski, M.; Sapa, L. Foundations of the Quaternion Quantum Mechanics. Entropy 2020, 22, 1424. Danielewski, M.; Sapa, L. Foundations of the Quaternion Quantum Mechanics. Entropy 2020, 22, 1424.
DOI: 10.3390/e22121424
Abstract
We show that the quaternion quantum mechanics has well-founded mathematical roots and can be derived from the model of elastic continuum by French mathematician Augustin Cauchy, i.e., it can be regarded as representing physical reality of elastic continuum. Starting from the Cauchy theory (classical balance equations for isotropic Cauchy-elastic material) and using the Hamilton quaternion algebra we present a rigorous derivation of the quaternion form of the non- and relativistic wave equations. The family of the wave equations and the Poisson equation are a straightforward consequence of the quaternion representation of the Cauchy model of the elastic continuum. This is the most general kind of quantum mechanics possessing the same kind of calculus of assertions as conventional quantum mechanics. The problem of the Schrödinger equation, where imaginary ‘i’ should emerge, is solved. This interpretation is a serious attempt to describe the ontology of quantum mechanics, and demonstrates that, besides Bohmian mechanics, the complete ontological interpretations of quantum theory exists. The model can be generalized and falsified. To ensure this theory to be true, we specified problems allowing exposing its falsity.
Keywords
relativistic Quaternion Quantum Mechanics; Cauchy-elastic solid; Schrödinger and Poisson equations; quaternions; Klein-Gordon equatio
Subject
PHYSICAL SCIENCES, Acoustics
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (0)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.
Leave a public commentSend a private comment to the author(s)