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Abstract: We show that the quaternion quantum mechanics has well-founded mathematical roots 

and can be derived from the model of elastic continuum by French mathematician Augustin 

Cauchy, i.e., it can be regarded as representing physical reality of elastic continuum. Starting from 

the Cauchy theory (classical balance equations for isotropic Cauchy-elastic material) and using the 

Hamilton quaternion algebra we present a rigorous derivation of the quaternion form of the non- 

and relativistic wave equations. The family of the wave equations and the Poisson equation are a 

straightforward consequence of the quaternion representation of the Cauchy model of the elastic 

continuum. This is the most general kind of quantum mechanics possessing the same kind of 

calculus of assertions as conventional quantum mechanics. The problem of the Schrödinger 

equation, where imaginary ‘i’ should emerge, is solved. This interpretation is a serious attempt to 

describe the ontology of quantum mechanics, and demonstrates that, besides Bohmian mechanics, 

the complete ontological interpretations of quantum theory exists. The model can be generalized 

and falsified. To ensure this theory to be true, we specified problems allowing exposing its falsity. 

Keywords: relativistic Quaternion Quantum Mechanics; Cauchy-elastic solid; Schrödinger and 

Poisson equations; quaternions; Klein-Gordon equation 

 

1. Introduction 

The quantum mechanics is considered to be an irreducibly statistical theory, as a result unable 

to predict the behavior of individual processes. On the other hand, it has been increasingly used, 

with stunning success, to gain control over individual objects on an atomic scale. This situation 

motivates the research into the foundations, leading to a variety of approaches towards an adequate 

theoretical justification of individual phenomena. It is not agreed whether such an interpretation 

requires a modification of the standard quantum formalism or whether it can be achieved within 

that formalism [1]. The first possibility of an ontological, i.e., realist, quantum mechanics was 

introduced with the original de Broglie–Bohm theory. 

Quaternion quantum mechanics, QQM, presented by us is ontic in the sense that it answers 

central question of interpretation of quantum mechanics. It is directly related to being (the Cauchy 

elastic continuum) as well as to the basic categories of being and their relations. The main concepts of 

quaternion quantum mechanics (QQM) for a both the general and mathematical audience are 

shown. The ideas coming from the quantum theory remain almost completely unfamiliar to most 

mathematicians who found it difficult to absorb physical ideas, mainly because of the absence of 

clear definitions and statements of the concepts involved. This paper attempts to overcome some of 

these gaps of communication. The subject is incredibly huge, and selections are unavoidable.  

The quantum mechanics, where we are. The quantum mechanics foundation remains a subject 

of discussion ever since it was presented in the 1920s. An instantaneous process of the 

wave-function collapse doesn’t fit together with the speed of light limit in Special Relativity. This is 

the “spooky action” that irritated Einstein so much about quantum mechanics. Present explanations 

base on assumption that collapse incompatibility has no observable consequences and it’s 

philosophically permissible. But the problem stay when one asks what happens with the mass and 
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energy of a particle when its wave-function collapses. Notice that the instantaneous jump is not 

expected in General Relativity and the unclear “string theory” doesn’t help.  

The Copenhagen interpretation represents the main-stream view; yet recent years witness 

revived interest in the alternative deterministic interpretation, pioneered by Madelung, de Broglie, 

and Bohm. David Bohm and Basil Hiley developed an interpretation of quantum mechanics which 

gives a clear and intuitive interpretation of its meaning with no need of assuming a fundamental role 

for the human observer [2]. Their ontological interpretation means the causal interpretation of 

quantum mechanics and is a refinement and completion of de Broglie’s 1926 pilot-wave model of 

non-relativistic quantum theory rediscovered by Bohm in 1952 [3]. This deterministic interpretation 

is still considered as basically equivalent to the Copenhagen orthodox understanding. It is 

noteworthy that high level scientists and even S Weinberg do not consider important to mention the 

unclear issues of the Copenhagen interpretation, the topics that motivated Bohm. The importance of 

the Bohm approach, i.e., the fact that it consistently solves the measurement problem and allows the 

classical description of macroscopic objects, is frequently ignored. 

John S Bell [4] has given a tremendous input to our understanding of reality by making clear 

that nonlocal features characterize natural processes. Even so he also was expressing dissatisfaction 

with the conceptual and logical status of the theory and has indicated only two possible ways to 

solve problem [5]:  

“Either the wavefunction, as given by the Schrödinger equation, is not everything, or it is not right”. 

Bell immense prestige has pushed many physicists to reexamine old problems. We are now 

observing a comeback of the imprecise and unprofessional thinking which have characterized the 

debate in the second quarter of the 20th. In particular the noteworthy is the domination of an 

incorrect, accepted by many scientists interpretation concerning the real meaning of Bell’s theorem 

[6]. What really matters is the fact that the derivation of Bell’s inequality in no way whatsoever needs 

an assumption of realism. In spite of this fundamental fact, which everybody can verify by going 

carefully through the proof, a large part of the scientific community shares the wrong opinion that 

realism is among the basic assumption needed for the derivation of Bell’s result. Bell himself has 

stressed this aspect and commented [7] that it is extremely difficult to eradicate this prejudice:  

“My own first paper [4] on this subject starts with a summary of the EPR argument from locality to 

deterministic hidden variables. But the commentators have almost universally reported that it begins with 

deterministic hidden variables”. 

Bell’s inequality has nothing to do with realism, it straightforward identifies that what quantum 

phenomena impose to us is to accept the unescapable fact that natural processes involving entangled 

states of composite and far-away systems turn out to be unavoidably non-local.  

Where we are today? Widely known remark by Richard Feynman in 1964  

“It is safe to say that no one understands quantum mechanics” [8] 

and Murray Gell-Mann statement in his lecture at the 1976 Nobel Conference that  

“Niels Bohr brainwashed the whole generation of theorists into thinking that the job (of finding an 

interpretation of quantum mechanics) was done 50 years ago” [9] 

are both actual. The deterministic interpretation that was considered as basically equivalent to the 

Copenhagen orthodox understanding is not in use. It was reasoned that since this theory is 

empirically indistinguishable from the standard theory, it should be considered an example of “bad 

science”. S Weinberg in a letter to S Goldstein [10,11] explicitly expressed such way of thinking:  

“At the regular weekly luncheon meeting today of our Theory Group, I asked my colleagues what they 

think of Bohm’s version of quantum mechanics. The answers were pretty uniform and much what I would have 

said myself. First, as we understand it, Bohm’s quantum mechanics uses the same formalism as ordinary 

quantum mechanics, including a wavefunction that satisfies the Schrödinger equation, but adds an extra 

element, the particle trajectory. The predictions of the theory are the same as for ordinary quantum mechanics, 

so, there seems little point in the extra complication, except to satisfy some a priori ideas about what a physical 

theory should be like... In any case… we are all too busy with our own work to spend time on something that 

doesn’t seem likely to help us make progress with our real problems.” 
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Important here is to mention that the predictive equivalence of the two theories is no more 

obvious [12]. It is safe to say that none of the existing interpretations and modifications of quantum 

mechanics truly solve the problem how to derive it from fundamental laws, is it ontic, etc. 

The quaternion quantum mechanics today. The first suggestion of quaternion quantum 

mechanics appears in a footnote of Birkhoff and J. von Neumann 1936 paper [13]. They suggest in 

particular that the physically significant statements in quantum mechanics actually constitute a sort 

of projective geometry, while the physically significant statements concerning a given system in 

classical dynamics constitute the Boolean algebra. This indicates that quantum mechanics has a 

greater logical consistency than classical mechanics; a conclusion validated by the impossibility in 

general of measuring different quantities independently. 

Yang has pointed out [14] that it is always possible to represent the pure states of a system of 

“general quantum mechanics” by rays in a vector space in a one-to-one manner, and for this it is 

necessary and sufficient to employ suitable orthogonal vector subspaces of some Hilbert spaces, H, 

over the following fields of numbers: 

, the real numbers, 

, the complex numbers, 

, the quaternions. 

This result suggests that it is not necessary to go beyond the three possibilities ,  and  for the 

representation of general quantum mechanics (The Hurwitz Theorem states that the real numbers 

, complexes , quaternions  and octonions 𝕆 are the only normed division algebras over the 

real numbers). A quantum mechanics coefficients assuming values that are quaternionic was 

proposed by Finkelstein et al. [15]. It was shown that a quaternion calculus exists that they called 

general quantum mechanics (as distinguished from complex quantum mechanics) and it is always 

possible to represent pure states of a system of general quantum mechanics by rays in a vector space 

over the quaternions, but not so over the real and complex numbers. These authors use Stone's 

theorem to explain the imaginary number “i” in the Schrödinger equation however, the central 

problem of finding a feasible dynamics for quaternionic quantum theory has remained unsolved. 

More recently, the global effects in quaternionic quantum field theory [16] were applied to analyze 

the experimental status of quaternionic quantum mechanics [17]. 

The algebra of complex numbers, quaternions and octonions play also an important role in 

physical interpretation of standard model for electro-weak interactions and quantum 

chromodynamics [18]. It is known that certain nonlinear Schrödinger (NLS) equations, in one or 

more space dimensions, possess space-localized solutions ( ), ,x t =  e.g., solitons in the 

one-dimensional case. Bodurov has shown that the same result is valid for a large class of complex 

nonlinear wave equations and NLS equations [19]. Białynicki-Birula and Mycielski have found that 

NLS equation admits closed-form space localized solutions (gaussons) [20]. They have shown also 

that “...in every electromagnetic field, sufficiently small gaussons move like classical particles”. Weng 

adopted the complex quaternion and octonion to formulate the field equations for electromagnetic 

and gravitational fields. The results reveal that the quaternion space is appropriate to describe the 

gravitational features [21]. Consistent with QQM are also the Three Wave Hypothesis by Horodecki 

that is based on the de Broglie’s particle-wave duality and the assumption of covariant æther 

[22,23]. Recently Gantner demonstrated the equivalence of complex and quaternionic quantum 

mechanics [24]. 

 The Klein-Gordon and Schrödinger equations are important tools for describing quantum 

mechanics, respectively relativistic and non-relativistic. Theirs stationary versions allow to find the 

values of quantized energy as the eigenvalues of self-adjoint operators on the Hilbert spaces. Adler 

studied downgraded quaternion-imaginary Lagrangian and showed that a quaternionic quantum 

field theory can be formulated when the numbers of bosonic and fermionic degrees of freedom are 

equal [25]. More recently he studied the quaternionic projective group representations and so-called 

trace dynamics in Hilbert spaces [26,27]. His idea of the trace dynamics relies on using a variational 
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principle based on a Lagrangian constructed as a trace of noncommuting operator variables, 

making systematic use of cyclic permutation under the trace operation. In our paper we construct a 

Lagrangian with the use of the Cauchy-Riemann operator, acting on quaternionic valued functions. 

Nottale contribution was derivation of the physical and mathematical tools of quantum mechanics 

by using the bi-quaternion concept. His approach proposes an answer to the question of the origin of 

complex and bi-quaternionic numbers, and more generally of Clifford algebra in quantum 

mechanics [28]. Recently, a quaternionic commutator bracket was proposed by Arbab et al. [29].

 Our quaternion Klein-Gordon and Schrödinger equations have much more physical 

information than their complex equivalents, i.e., make it a much richer theory. In this work we will 

derive the Schrödinger equation with the use of the variational calculus, minimalizing the suitable 

integral functional generated by our constructed Lagrangian. Further qualitative analysis of these 

quaternionic equations will be the subject of our future papers. 

Summing up, the quaternion quantum mechanics has many new features which make it a 

much richer theory. It is caused generally by noncommutativity of quaternion valued wave 

functions. It has not yet been more fully developed mainly due to the problem of how to write the 

Schrödinger equation. Remains valid the remark by Lord Kelvin (alias William Thomson, who 

formulated the laws of thermodynamics) [30]:  

“Quaternions came from Hamilton…and, though beautifully ingenious, have been an unmixed evil to 

those who have touched them in any way, including Clerk Maxwell”. 

The Planck-Kleinert crystal. It was shown that quantum gravity effects modify the 

Heisenberg’s uncertainty principle to a generalized uncertainty principle (GUP) [ 31 ]. The 

GUP-induced corrections to the Schrödinger equation, when applied to a non-relativistic particle in 

a one-dimensional box, led to the quantization of length and result was interpreted as a signal of 

fundamental discreteness of space itself. Similarly, corrections to the Klein–Gordon and the Dirac 

equations, gave rise to length, area and volume quantization’s, again indicated of the fundamentally 

grainy nature of space. Such approach modifies all quantum mechanical Hamiltonians [32]. When 

applied to an elementary particle, it implies that the space which confines it must be quantized. 

This suggests that space itself is discrete, and that all measurable lengths are quantized in units of a 

fundamental length (which can be the Planck length). 

 The original arguments to implement the classical mechanics equations in the field of wave 

mechanics were given by Kleinert [33]. Kleinert combined Planck scale approaches to Quantum 

Gravity (such as String Theory and Doubly Special Relativity, black hole physics) that predict a 

minimum measurable length. The building blocks of the Kleinert continuum (solid) are Planck 

particles, mP, that obey the laws of mass, momentum and energy conservation. Each particle exerts a 

short range force at the Planck length. The Kleinert concept linked with the Cauchy model of elastic 

continuum has been later analyzed with the arbitrary assumption of the complex potential field [34]. 

Recently the Cauchy theory was rigorously combined with the Helmholtz decomposition of the 

vector field of deformations together with quaternion algebra [35] and such representation of the 

Cauchy equation of motion produced the Klein-Gordon wave equation [36]. 

In this paper we present the fundamentals of the quaternion quantum theory, with the clear 

and precise specification of what the theory is basically about. The fundamental new results, 

explicitly the deformations represented in quaternion algebra and the family of waves in elastic 

continuum are derived.  

The essentials of quaternion algebra are given in Section 2.1, and Cauchy model of elastic 

continuum in Section 2.2. Both can be omitted be experienced reader. In Section 3 we present the 

rigorous derivation of the quaternion representation of the Cauchy deformation field that allows 
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considering multiple forms of waves and standing waves in ideal elastic solid. The final result is the 

vast possibility of wave forms in the elastic continuum. 

2. Methods.  

2.1. . Essentials of the quaternion algebra. 

The algebra of quaternions, , owns all laws of algebra with unique properties [37]. The 

essential here are (1) the multiplication of quaternions that is not commutative and (2) it allows 

quantifying twists and compression. In the next sections we attempt to convince readers that 

quaternions are a physical reality. Not only helpful and convenient, the quaternions also allow 

entering and understanding the processes in continua, together with the wave mechanics.  

Hamilton tried for ten years to create the 
3

 analog of the complex numbers. His 

unquestionable motivation was physics of solids and liquids. Finally in 1843, while on a walk with 

his wife Helen, he realized that three distinct imaginary units are necessary. He carved new idea on 

the Broom Bridge in Dublin, which today is immortalized by a commemorative plaque [38]. The 

beauty of quaternions was immediately recognized, James Clerk Maxwell in 1869 wrote [39]:  

”The invention of the calculus of quaternions is a step towards the knowledge of quantities related to 

space which can only be compared for its importance, with the invention of triple coordinates by 

Descartes. The ideas of this calculus… are fitted to be of the greatest in all parts of science.”  

In spite of this, the all Maxwell attempts to reformulate electromagnetism using quaternions 

were unsuccessful [30].  

The simplified, trivial and unfortunately very common opinion tells that quaternions were 

invented as an extension to the complex numbers. Nowadays they are in mass use in the 

computation of rotations… in every computer graphics film studio. In the same way, the calculus of 

imaginary numbers by many is considered as the justified useful tool, by no means the physical 

reality. Not many scientists agree that reformulating basic principles in terms of quaternion algebra 

allows deeper understanding of the physics. 

Our review of basic definitions and formulas of the quaternion numbers and functions is 

shortened and limited to those used in this paper [37]. In original Hamilton notation a quaternion is 

regarded as the sum of a real (scalar) and imaginary (vector) part:  0 0

ˆ ˆ,1    = + =  . An 

arbitrary quaternion   can be written in terms of its basis components 

 ( )
0 1 2 3
, , ,=      , (1) 

where the four 
0
,

i
   coefficients are real. In (1) we introduced notation that is right and convenient 

in a case of an ideal elastic continuum where only the compression, 
0 , and twist (torsion) emerge, 

explicitly: 
1 1

=  , 
2 2 3 3

  and     = = . 

Rigorously, in the mathematical way, the quaternion algebra  can be defined as follows. Let 
4

 be the four-dimensional Euclidean vector space with the orthonormal basis  
0 1 2 3
, , ,e e e e , 

where ( )
0

1, 0, 0, 0e = , ( )
1

0,1, 0, 0e = , ( )
2

0, 0,1, 0e = , ( )
3

0, 0, 0,1e =  and with the three-dimensional 

vector subspace  
1 2 3
, ,P span e e e= . We introduce the multiplication law by the formula 

  ( )0 0 0 0 0

ˆ ˆ ˆˆ ˆ ˆa b a b a b e a b a b ab = − +  + + , (2) 

where 
3

0

i i

i

a a e
=

=  , 
3

0

4

i i

i

b b e
=

=  , 
3

1

ˆ
i i

i

a a e
=

=  , 
3

1

ˆ
i i

i

b b e P
=

=   and ,   mean the scalar and 

vector products in P , respectively: 

      
3

1

ˆˆ
i i

i

a b a b
=

=  , 
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1 2 3

1 2 3

1 2 3

ˆˆ det .

e e e

a b a a a

b b b

 =

 
 
 
  

 

Note that the multiplication given by (2) is non-commutative. The vector space 
4

 with the 

multiplication (2) is a non-commutative algebra with unity usually denoted by  and it is named 

the quaternion algebra. In practice the following algebraical notation is useful: 

0 1 2 3
1, , ,e e i e j e k= = = = . By the definition (2) the quaternion imaginary units obey the following 

relations: 

  2 2 2
  1, , ,  .i j k ij ji k jk kj i ki ik j= = = − = − = = − = = − =   (3) 

Thus for an arbitrary quaternion  , we can write shortly 

  
0 1 2 3 0

ˆ1 1i j k= + + + = +       . (4) 

A conjugate quaternion is defined as 

  
*

0 1 2 3 0

ˆ1 1i j k= − − − = −       . (5) 

It follows immediately from (2) - (5) that 
3* * 2 2

0 1 ll
     

=
 =  = +  , and therefore the Euclidean 

norm 

  
*

=    .  (6) 

Hence  is a normed algebra. 

 Let 
3

   be a bounded set. The so-called -valued functions may be written as 

  ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 1 2 3
1 , , ,x x x i x j x k x x x x    = + + + =    (7) 

where the functions ( ) ( )0
, , 1, 2,3

l
x x l  =  are real-valued. Properties such as continuity, 

differentiability, integrability and so on, which are ascribed to σ have to be possessed by all the 

components ( ) ( ) ( ) ( )0 1 2 3
, , ,x x x x    . In this manner the Banach, Hilbert and Sobolev spaces of 

-valued functions can be defined [37]. In the Hilbert space 

  ( )  2

0
: | d , d , 1, 2,3

l
L x x l  

 
 =  →     =    (8) 

we introduce the inner product as follows 

  ( )* 2

1 2 1 2 1 2
, d , ,x L     


=    .  (9) 

In the similar way we define the Sobolev spaces 

  ( ) ( ) ( ) ( ) 1 2
: | , ,..., , .

kk
H L k    =  →      (10) 

The definition of self-adjoint operators acting on these spaces is analogous as in the complex case. 

Similarly the functions ( ),t x  depending on time t may be considered. 

We will use the Cauchy-Riemann operator D  acting on the quaternion valued functions 

  ( )
0 0

ˆ ˆ ˆdiv 1 grad rot , 1D = − + + = +       , (11) 
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where 0 0 0

0

1 2 3

grad i j k
x x x

  


  
= + +

  
, 31 2

1 2 3

ˆdiv
x x x

 


 
= + +

  
  and 

  

1 2 3

1 2 3

ˆrot det .

i j k

x x x


  

  
=

  

 
 
 
 
 
 

 

Under the constraint ˆdiv 0= , D corresponds physically to the nabla operator   in 
3
: 

 
0 0

ˆ ˆgrad rot , 1D = + = +      . (12) 

The exponent function has its trigonometrical representation 

  0

ˆ
ˆ ˆcos sin ,

ˆ
e e= +

 
 
 

 
 


 0

ˆ1  = + , (13) 

where σ is a -valued function. 

Remark 1. Note that DD = −  , thus Eq. (12) links quaternion quantum mechanics to reality in 
3

. 

Remark 2. In further parts we will identify a vector
0
1  with a real number 

0
  so we will write 

for simplicity 
0

ˆ= +   . Therefore  can be treated as the generalized simple sum P . 

2.2. Cauchy Classical Theory of Elasticity 

Cauchy finished the theory of ideal elastic continuum in 1822 [50,51], right away Poisson [40] 

studied the elementary waves. In 1885 Neumann [41] gave the proof of the uniqueness of solutions 

of s o m e  boundary-initial value problems and before the end of XIX century a rigorous 

completeness proof was given by Duhem [42]. Cauchy theory is the first real attempt to construct a 

theory of elasticity using the continuum approach, where the macroscopic phenomena are described 

in terms of field variables [43,44]. Important here is that 

1. the Cauchy theory of ideal elastic continuum is well-founded and allows for the advanced 

mathematical analysis of the various phenomena; 

2. the Cauchy and to the same degree the majority of physical problems cannot be reduced to 

vectorial models (the vector product does not permit the formulation of algebra, for 

example, the division operation is not defined [45]); 

3. the Hamilton algebra of quaternions,  , and Hamilton concept of the four-dimensional 

space allow combining Cauchy theory with Helmholtz decomposition theorem. 

In the following we consider FCC structure, where the Poisson number   = 0.25, Pl  denotes 

the dimension of the FCC elementary cell that consists of four interacting Planck particles showing 

the mass mP. 

1. The continuum is treated as a closed system occupying the constant volume 
3

  . 

2. The continuum density, P , is high and we consider the small deformation limit only, 

.Pl const= , thus the density changes are negligible and 
34 .P P Pm l const= =  

3. The small deformation limit implies invariant transverse wave velocity: 

0.4 .
P

c Y const= = , where Y  is the Young modulus [43], Eq. (16). 

4. In agreement with the Helmholtz decomposition theorem [46], every lattice deformation u can 

be expressed as a sum of compression and twist, 
0 

= +u u u . 
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5. We will consider here the long evolution times, Pt t , where Pt  is Planck time and the 

moving (translating) waves,  , where   is the velocity of the wave mass center as defined 

by Bodurov [19,47]. 

In this section we do not consider external fields. In such continuum the equation of motion 

relates local acceleration due to the displacement with the field variables, the compression ( )div u  

and twist ( )rotu  

 
2

2 2

2
3 grad div rot rotc c

t


= −



u
u u . (14)  

From Eq. (14), the energy per mass unit in the deformation field follows [43,48] 

 ( )
22 21 3 1

div rot rot
2 2 2

E

P

e c c= = + +u u u u u



, (15) 

where t=  u u  and  denotes scalar multiplication (scalar inner product) in 
3

.  

Equation (14) and relation (15) obey the Euler–Lagrange relation 
d

0
d

e e

t

  
− = 

  u u
. It means 

that one can derive the vector equation of motion from the scalar relation of energy conservation and 

vice versa. The scalar relation (15) and the vector equation (14) rule the deformation in the ideal 

elastic continua. By the Helmholtz decomposition theorem, every deformation can be expressed by 

the compression, 
0u , and twist, u , and if u belongs to 3C   class of functions then 

0= +u u u , 

where 
0rot 0=u  and div 0=u . Upon acting on Eq. (14) by divergence and rotation operators, we 

decompose it and get well known transverse and the longitudinal wave equations in the usual form 

tt xxk=u u : 

 
( ) ( )

2 2
2 2 2

0 02 2

2 2
2 2 2

2 2

div 3 grad div rot rot div 3 div ,

rot 3 grad div rot rot rot rot .

c c c
t t

c c c
t t

 =  − 

  
= −  =  

  

  
= −  =  

  

u u u

u
u u u u

u
u u u u 

  (16) 

The Cauchy equation of motion combined with the Helmholtz decomposition theorem results 

in four uncoupled second-order scalar differential equations, “quattro cluster”, and implies the 

transverse and longitudinal waves in the Cauchy elastic solid. Note that these equations remain 

coupled by the relation of the energy density, Eq. (15). In the next sections, using the quaternion 

representation the Cauchy elastic continuum plentiful forms of the complex wave equation are 

derived. 

3. Results 

3.1. The Cauchy Deformation Field in the Quaternion Representation 

The Cauchy classical theory of elasticity is an elegant starting point to show the physical reality 

and the significance and beauty of quaternions. The Hamilton algebra  allows recoupling the 

compression and twist that were separated in (16). Upon denoting ( )0 0 0div ,0,0,0u= =   and 

( )1 2 3
ˆ rot 0, , ,= =u     as well 

1 2 3
ˆ i j k= + +     we get 

 

2

20

02

2
2

2

3 ,

ˆ
ˆ.

c
t

c
t


= 




= 









 (17) 

Relation (15) takes the form 

 2 2 2

0
ˆ ˆ1 2 3 2 1 2e c c= + +u u    . (18) 
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Decomposition 
0= +u u u  in Eq. (16) results in four equations (17) and implies the existence of 

deformation field 
0

ˆ= +    that represents the twist and compression fields as a superposition of 

a real (scalar compression 
0

 ) and imaginary (twist vector, ̂ ) field parts at each point 

  *

0 0
ˆ ˆ   and   = +  = −         (19) 

where the following constraint holds 

 ˆdiv div rot 0.= =u


   (20) 

Adding equations in (17) and from constraint (20), we get quaternion form of the motion equation 

 
0

2

02 2

1 ˆ2 0  where   
tc


   


− =


 = +−  . (21) 

Eq. (21) must obey constraint (20) and require boundary conditions for a solution in the quaternion 

form. Since 
*ˆ ˆ ˆ ˆ ˆ ˆu u u u u u= =−  = u u , where 

1 2 3
û u i u j u k= + +  and ( )

1 2 3
, ,u u u=u , the overall 

energy of the deformation field, the formula (18) becomes in the quaternion form 

 2 * 2 21 1
0 1 2 32 2

ˆ ˆ ˆ,   where   .e u u c c u u i u j u k= − +  + = + +     (22) 

The energy is conserved, so relation (22) leads to the nonlocal boundary condition for Eq. (21) [36]. 

Remark 3. The Cauchy theory of elastic continuum combined with the Helmholtz decomposition 

theorem and quaternion algebra results in second order differential equation (21) and constraint 

(20). It infers the transverse, longitudinal and multiple complex forms of waves. Equation (21) and 

the relation (22) satisfy the Euler–Lagrange differential equation, i.e., satisfy the fundamental 

equation of the calculus of variations.  

3.2. Quaternion Quantum Mechanics 

In this section we combine the Hamilton algebra of quaternions [49], the Cauchy classical 

mechanics in 
3

 [50,51] with Planck-Kleinert crystal concept [33,34]. The fundamental new results, 

explicitly the ontology of Quaternion Quantum Mechanics, appearance of imaginary number in 

Schrödinger equation and the family of waves in elastic continua will follow.  

The crystal hypothesis can be found in Maxwell paper published in 1856 “A Dynamical Theory of 

the Electromagnetic Field” [52] where Maxwell explicitly remarked on the ether:  

“On our theory it (energy) resides in the electromagnetic field, in the space surrounding the electrified 

and magnetic bodies, as well as in those bodies themselves,… may be described… according to a very 

probable hypothesis, as the motion and the strain of one and the same medium (elastic ether)”. 

Less known. if not entirely forgotten, is section on gravity where Maxwell wrote:  

“…assumption, therefore, that gravitation arises from the action of the surrounding medium… leads 

to the conclusion that every part of this medium possesses, when undisturbed, an enormous intrinsic 

energy… As I am unable to understand in what way a medium can possess such properties, I 

cannot go any further in this direction in searching for the cause of gravitation.” 

Maxwell was unsuccessful in formulating his theory in quaternion form. His idea of solid 

ether showing “enormous intrinsic energy” was unimaginable in XIX century.  

In simple words, we regard quantum space as an analog to the Cauchy elastic solid. Already, 

upon adding Eqs. (17), we obtained quaternion form of the motion equation, Eq. (21). In this section, 

we show that upon splitting Eq. (21) into the system of the wave and Poisson type equations, the 

multiple non-linear forms of the wave equation follow. That is, the quaternion motion equation 

produces the family of the non-linear stationary and quasi-stationary waves. The properties of 

Planck-Kleinert crystal (Maxwell elastic ether) are presented in Table 1. 

 

Table 1. The physical constants of the Planck-Kleinert crystal (fcc ideal isotropic crystal). 

Label used in this Planck Symbol Value SI unit Reference 
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work constants for unit 

Transverse wave     

velocity 

Light velocity 

in vacuum 
c 8

2.99792458 10   ms−1 [56] 

Lattice parameter Planck length lP 1.616229(38)·10−35 m [56] 

Poisson ratio    0.25 - [56] 

Mass of the Planck 

particle 
Planck mass mP 2.176470(51)·10−8 kg [56] 

Planck-Kleinert 

crystal density 
 

P
  2.062072·1097 kgm−3 [56] 

Duration of the 

internal process 
Planck time tP 5.39116(13)·10−44 s−1 [56] 

Young modulus 
Intrinsic 

energy density 
Y 4.6332447·10114 kgm−1s−2 

0.4
P

c Y= 

 

 

Remark 4. The Quaternion Quantum Mechanics follows from rigorous quaternion representation 

of the  Cauchy linear theory of elasticity, Eqs. (20) and (21). 

3.3. The Relativistic Stationary Waves in the Cauchy continuum: Klein-Gordon equation 

To do so, we consider the wave showing the overall energy constnE = . Subsequently, Eq. (21) 

can be written as a multisystem: 

 
( )

( )

2
2 *

2 2

2 *

0

1
1 0,

   for   0,1,2,

2 0,ˆ

n

n

n k
t n

n n k

c

 
− + + =

 =


− + =

 

  − 


  

   

  (23) 

where 1n nk =   and ( )n nf E=  denotes the wavelength. Note that by adding equations in (23), 

the momentum balance is expressed again by a single partial differential equation (21). System (23) 

is a hyperbolic–elliptic quaternion representation of a wave equation (21) and has the solution of the 

form: 

 0 0 1 2 3
ˆ i j k= + = + + +        . (24) 

The second equation in (23) is the Poisson type equation, and it describes/defines the compression 

potential as a function of energy density. The analysis of system (23) in a case when n = 0 shows that 

wave equation is the quaternion Klein–Gordon type equation [53] and Poisson equation 

 

2
2 *

2 2

2 *

0

1
0,

2 0.

n

n

k
t

k

c

 
− + = 

 


= − =

 

 

 

  

  (25) 

Consider a quasi-stationary wave in the Planck-Kleinert crystal, Table 1, i.e., the particle showing the 

constant overall energy (equivalent mass), 
2m Ec const−= = , E  denotes overall wave energy 

and P Pc l t=  [36]. Thus, Eq. (25) can be written  

 

2
2 *

2 2

2 *

0 2

8

8
,

0,

2

P P

P P

m

m

m

m

c
t t

t
c

 
− 

 

 = − 



 + =







 

  

 (26) 

and in the compacted form as 

  
2

*

2 2

81
0

P

m

c t t

 
−  

 
 + =


    (27) 

or in the covariant notation 
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 *8
0

P

m
m

t
  +  =




   , (28) 

where 

2

2 2

1

c t


  = − 






  and  

2 34 2 -1
1.0545 10 kg m s727

P P
m c t

−
= =    .  

The Klein-Gordon equation fulfills the laws of special relativity, but contains two fundamental 

problems [54]. The first one is that it allows negative energies as a solution. As can be seen, the 

energy computed using formulae (22) as well as Eq. (28) is per definition always positive due to the 

constraint (20).  

The second equation in (26) is the Poisson equation and describes the irrotational, e.g., 

compression, potential in the deformation field. By introducing physical constants of the 

Planck-Kleinert crystal we get 

 2 *

0 2

1
4

P P

m
m t

c = −       (29) 

Above relation can be expressed as a function of the local mass density: 2 * 3

E P Pm c l=     [36] 

 
3

2

0 2
4 4P

P P

l
G

m t
c = − = −    , (30) 

where using data in Table 1, the gravitational constant equals: ( )2 113 6.674082 10P P PG l t m −= =   

3 -1 -2m kg s .      

Remark 5. The low deformation limit considered by us allows for the simplified assumption of the 

constant the overall energy density as well as the constant transverse wave velocity. Consequently 

the gravity in the simplified form of Poisson equation follows. By considering the dependence of the 

energy density on deformation one can get the extended quaternion form of relation (29) or the 

geometrical theory of gravitation when invariant velocity of transverse wave is assumed. 

3.4. Non-relativistic wave in Cauchy continuum, quaternion form of the Schrödinger equation 

The quasi-stationary wave means here that the wave can be treated as a particle in an arbitrary 

volume Ω. Such a wave has multiple properties, important here are: 

1. the overall energy, 0E E Q= + , where 
0

E  and Q are the ground and excess energies, and the 

overall energy density, E ; 

2. the equivalent mass interrelated to the wave overall energy; 

3. the wave mass center and its translation velocity   [19].  

In the following the label kinetic will denote the wave translation in continuum: e.g., the wave 

velocity,  . The category dynamic will denote the local movements within the elastic continuum 

itself, i.e., the local kinetic energy density, k, caused by the lattice local velocity, û . From relation 

(22), upon substituting  
0 03=  , the overall wave energy can be expressed by the formula 

 

0 2 * *

2

2 2

1 1ˆ ˆd d
22

    d     d

            +       ,

E P

P P

E E Q x c u u x
c

c k x c s x

K S

   

 

 

 

 
= + = =  +  

 

= +

=

 

    (31) 

where 
0 0 0

ˆ ˆ3 .= + = = +       

 The overall mass of the particle, m, and the particle mass density, ρ, follow from (31), 

 * *

2

1 1ˆ ˆd d
22

Pm x u u x
c 

 
= =  +  

 
     . (32) 

We conclude that, the “the overall mass of the particle” follows from the relations (31) and (32): 
2m E c= . The mass is ontic in that sense that the particle mass is identity with the overall dynamic 

energy of the wave in elastic quasi-continuum of the Planck particles, see also [55]. Note that in 

general when Q > 0, m differs from the mass at the ground state. In simple words, when Planck 
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particle in the ideal crystal due to an arbitrary cyclic process has the overall energy
PE , then the 

ratio 
2Pm E c= we call the mass of the “particle localized on” this single Planck particle 

The waves in Ω may differ in shape and other essentials, the overall particle energy, relation 

(31), reveals the wave nature. The considered here quasi-stationary wave has to satisfy the relation 

(31) and at the every position, the energy density is a sum of the dynamic, k, and strain, s, energy 

terms: ( ) ( )2 0.4E Pc k s Y k s= + = +  . 

We start with an elementary situation when velocity of wave mass center   is low and 

constant, c . By using the extremum principle, namely the action concept, one can quantify 

elementary properties of such wave. At every position in Ω:  

1. the existence assumption of the quasi-stationary wave implies an equal duration of the 

periodic cycles in the whole volume occupied by the wave, .t const =  Consequently  

implies, that the s- and k-actions are equal 

 ( ) ( ) ( ), d , d
t t t t

t t
s x k x x t

+ +

= =       ,  (33) 

2. the sum of the overall strain, S, and the kinetic energy, K, in relation (31) equals the overall 

wave energy 0E E Q= + , and is time invariant, 

3. spans of the strain and the kinetic energy terms are equal, 

( )  ( ) 0,max , 0,max ,k t x s t x   =     ( ) ( ) ( ) ( )20, , 0, , 0.4E P Et x c t x Y = =    
   . 

The relation (33) is valid for the whole Ω so,  

( ) ( ), d d , d d
t t t t

t t
s x x k x x t

+ +


 

= =         , 

and also for arbitrary number of cycles: t n t=  . Thus, from the assumptions 2  and 3 above and the 

relation (31) it follows that both actions in Ω can be approximated by the discrete formula 

 
0 0

d d d d
n t n t

n t s x k x
 


 

 = =      . (34) 

Taking into account that we consider time evolution in a case when t t , the continuous 

expressions for both actions follow 

 
0 0

d d d d
t t

t s x k x
 

= =      .  (35) 

Taking time derivative of the relations in (35) we get: 

 d d   for   s x k x t t
 

=   . (36) 

Both terms, s and k, in (36) oscillate and depend on the time and position. It will be useful to 

normalize the displacement term s in (31) with respect to the overall particle mass, relation (32). Note 

that because we restrict our analysis to the low velocities ,c  the translation energy has a minor 

impact on the overall wave mass and 
0m m . From the formulae (31), (32) and (36), the normalized 

strain energy density, s, equals 

 * *d d 1,    where       P Px x
m m 

 =  = = 
 

      . (37) 

Consequently from (31), (36) and (37) 

 ( )2 * *0 dP c E x


=  −        (38) 

and also 

 * *ˆ ˆ0 dP u u E x


 =  − 
     . (39) 

Note that, the relations (31), (32) and (38) imply the relation between the overall energy of the wave, 

and equivalently the overall wave mass 2 ,E mc=  and the probability density because the relation 

(37) is satisfied. Obviously, the both terms, P

m
=


   and *,   vary in time. 

Remark 6. The relation (38) links up frequency of the wave with its overall energy:  

1)  the excess, Q, and ground, 0E , energies are entangled in (38) and can’t be separated, 
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2)  the overall wave energy can be increased by translation term, accordingly also all 

displacements and velocities are affected, 

3)  the wave periodicity implies that by solving the relation (39), one should expect only the 

discrete values if excess energy Q, 

4)  when the wave overall energy equals its ground energy, Q = 0, then relation (38) results in 

 ( )( )*
2 0 0 0 *0 dP c E x


=  −       ,  (40) 

where 0  denotes the displacement in the wave at the ground energy E0. 

 

3.5. Wave in the time invariant potential field.  

Let consider now the evolution of the wave as in the relation (31) in the time invariant potential 

field, e.g., in the field generated by other particles. The overall energy is now a sum of the ground 

and excess energy 

 ( )0 * 2 * *1 1ˆ ˆ d
2 2

P PE E Q u u c V x x


 
= + =  +  +  

 
       , (41) 

where 
* 0

Q = + =      and 0

Q= +   . 

We consider a low excess energies, c . Consequently: 1) the impact of Q on the overall 

particle mass is marginal, 
0m m , and 2) the displacement   in (41) can be normalized using the 

formulae (37). Thus relation (41) becomes 

 

( )

( )

0 * 2 * *

2 * *

1 1ˆ ˆ d
2 2

1 1 ˆ ˆ                 d .
2 2

P

P

E E Q u u m c V x x

m c u u V x x





 
= + =  +  +  

 

 
= +  +  

 





    

  

  (42) 

Both, the 
0E  and m are constant, thus it is enough to minimize the relation 

 ( )* *1 ˆ ˆ d
2

PQ u u V x x


 
=  +  

 
    . (43) 

Above relation contains the unknown kinetic velocity due to the potential ( )V x . The 

Cauchy–Riemann operator of the deformation, D , can be understood, by means of the relations 

(11) and (12), as an analogy of the gradient in 3 . In the classical dynamics, the potential gradient 

results in acceleration. For the quaternion representation of the deformation field it is reasonable to 

guess that the local momentum in crystal (i.e., the Planck particle momentum), ˆˆ
pp m u= , is related 

to the Cauchy–Riemann operator of the quaternion displacement, .D  Namely, the local lattice 

velocity is proportional to 1) the force that is the normalized Cauchy–Riemann derivative of the 

local displacement, Pl D , and 2) the transverse wave velocity c . Accordingly 

 ˆ
P Pp m cl D D= − = −  , (44) 

where we introduced constants 2

P Pm c t=  and 
P Pt l c=  i.e., is the time that transverse wave 

travels at the lattice distance: 
P Pl ct= . 

The momentum balance requires 

 
ˆˆ p

u D
m m

= = −  . (45) 

By introducing (45), the relation (43) becomes  

 ( ) ( ) ( )
2

* *

2
d

2
PQ D D V x x

m

 
=  +  

 
      .  (46) 

Normalization using (37) results in the functional  

   ( ) ( ) ( )
2

* * d
2

Q D D V x x
m

 
=  +  

 
     . (47) 
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There are numerous methods solving above problem, e.g., the path integrals, the Hamilton Jacobi 

equation, etc. We minimize the functional  Q  , that is the integral above, with respect to a 

quaternion function such that   satisfies the normalization introduced in the relation (37). We 

look for a differential equation that has to be satisfied by the   function to extremize (here 

minimize) the energies allowed by (47). Subsequently we will show that the extremum problem 

leads to the quaternion analog of the time–independent Schrödinger equation.  

Given the functional (47) and the constraint (20), we seek for the conditional extreme and use 

the Lagrange coefficients method combined with a procedure presented in the Appendix 1. Then 

there exists a multiplayer 0  such that   minimalizes the functional 

   ( ) ( ) ( )
2

* * *1
d .

2
Q D D V x x

m

  
=  +  + −       

          (48) 

It follows from the Appendix 1 that,   satisfies the differential equation 

 ( )
2

2
V x

m
−  + =   , (49) 

where a constant factor on the right–hand side can be considered as an extra energy of the particle 

in the presence of the field V = V(x).  

For E =  , Eq. (49) is clearly the time independent Schrödinger equation satisfied by the 

particle in the ground state of the energy E ,  

 ( )
2

2
V x E

m
−  + =   .  (50) 

It has to be satisfied together with the condition  

 
0

ˆ ˆdiv 0  where  = = +    .  (51) 

Upon using the NIST data [56] of the Planck's natural units , ,
P P p

m l t  and the light velocity c, the 

constant  introduced in relation (44) equals the Planck constant, 
34

6.626069311 10
−

= . 

The particle (wave) mass center. The meaning assigned to “space-localized” is used in the sense 

given by the Bodurov definition [57]: 

A singularity-free multi-component function  ( )0 1 2 3, , ,=       of the space ( )1 2 3, ,x x x x=  

and time t variables will be called space-localized if ( ), 0x t →  sufficiently fast when x →  , 

so that its Hermitean norm, see Eq. (9) 

 ( )3* 2 *

0 1
d dl ll

x x       

= 
  = +  =       (52) 

remains finite for all time. 

3.6. Time dependent Schrödinger equation 

By analogy to the complex time-dependent Schrödinger equation ( )
2

2
i V x

t m


= −  + 


, we 

propose a quaternion form 

 ( ) ( )
1 1

3 2
i j k V x

t m


+ + = −  + 


. (53) 

When the external potential ( )V x  is negligible, then Eq. (53) is a quaternion form of the Schrödinger 

equation 

 ( )
2

i j k
t m


= + + 


. (54) 

We will show now that by the substitution ( )
( )

( ),
E

i j k t

t x e x
− + +

 =  , the equation (53) leads to the 

time–independent Schrödinger equation (50). Note that by the trigonometric formula (13), we have  
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 ( ) ( ) ( )
1

, cos 3 sin 3 ,
3

E E
t x t i j k t x = − + +

    
        

  (55) 

 

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

, 3 sin 3 cos 3

1
              cos 3 sin 3

3

              .

E
i j k t

E E E E
t x t i j k t x

t

E E E
i j k t i j k t x

E
i j k e x

− + +


= − − + +



= − + + − + +

= − + + 

    
        

    
        







  (56) 

Obviously 

 ( )
( )

( ),
E

i j k t

t x e x
− + +

 =  .  (57) 

Hence it is immediately seen that Eq. (53) implies Eq. (50). Consider the special case 
1 2 3

 =  =   

and put 
1 2 3

: =  =  =  . It follows from elementary calculations that 
0

:
3

i j k+ +
 =  +   

solves the quaternion Schrödinger equation (53) if and only if 
0: i =  +   solves the complex 

Schrödinger equation 

 ( )
21

23
i V x

t m


= −  + 


. (58) 

Remark 7. The quaternion form of the time dependent Schrödinger equation (53) was derived and 

the special case when it solves complex Schrödinger equation was demonstrated. 

 

4. Summary 

 We presented the foundation of Quaternion Quantum Mechanics based on the Cauchy model 

of the elastic continuum. Cauchy model of an ideal elastic solid with the Helmholtz decomposition 

theorem and the quaternion algebra , generate the transverse, longitudinal and multiple forms 

of waves. The quaternionic analogue of vector formulation of the Cauchy model elucidates the 

coupling between the irrotational and solenoidal displacements in the deformation field 

(compression and torsion) and allows for a physical interpretation of the wave mechanics. The 

wave, i.e., the collective movement of the constituents forming the elastic Navier-Cauchy 

continuum, is considered as equivalent to the particle. By combining the quaternion 

representation of Cauchy model with the Planck-Kleinert crystal concept we presented the 

self-consistent formulation of the wave phenomena where the quantum space is regarded as an 

analog to the elastic solid. The presented Quaternion Quantum Mechanics follows from rigorous 

quaternion representation of the Cauchy linear theory of elasticity: 

1. The quaternion form of the time dependent Schrödinger equation (53) was obtained and the 

special case when it solves complex Schrödinger equation was demonstrated. Thus, the origin of 

complex numbers in QM was explained. 

2. The Klein-Gordon and Poisson equations were derived from assumptions which are 

independent of the postulates of quantum mechanics and prove the origin of the wave function. 

The problem of the indefinite probability of the density, present in classical Klein-Gordon equation, 

is ruled out in its quaternion form. 

3. All presented family of the quaternion wave functions is ontic, directly represent a state of 

elastic continuum showing properties of the Planck-Kleinert crystal. 

 The method used by us allows the self-consistent interpretation of the wave phenomena and 

yields the non-relativistic gravity field. It is obvious that it can be generalized and extended upon 

neglecting the assumptions of the small deformation limit that implies the constant density and the 

constant transport properties within the deformation field. Model can be falsified, see K. Popper 

[58]. Namely, the following hypotheses require formal verification: 

1. Experimental verification to reveal superdeterminism, e.g., using method proposed by 

Hossenfelder [59]. 

1. The experimental verification of the particle mass center, Eq. (52). 
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2. The avoiding of the assumption of the small deformation limit that implies the constant 

transverse wave velocity. The dependence of the energy density on deformation will result in: 

 - the extended quaternion form of relation (29) or  

 - the geometrical theory of gravitation when invariant velocity of transverse wave is presumed. 

3. A reexamination of Schrödinger's charge density hypothesis. Namely, the Noether theorem can 

be used to decrease the order of the quaternion form of Schrödinger equation [60].  

4. The time dependent Schrödinger requires the rigorous proof of the quaternion form of the 

Hamilton-Jacobi equation.  

 What is more, the results demonstrate that quaternions are much more comfortable than 

vectors, have huge advantages in the calculation of twist (and rotations) and can be regarded as the 

most concise representation of physical reality. Not only at the Planck scale, not only helpful and 

convenient, quaternions allow understand the processes in continua. 
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Appendix A 

Let 
3

   be an open bounded set with the smooth boundary ∂Ω. Moreover, let , :  →   

be given sufficiently regular functions, in a special case they can be constants. Define a real 

functional 

   ( ) ( )( ) ( )
**

dF x x D D x


=  +            (59) 

acting on a set     2
:  of the C  class  on S H g=  →  =   , where g is a given function.  

The functional F can be written in the form 

  ( ) ( )( ) ( ) ( )( )

( )( ) ( )

( )

2 2 2 2

0 0

22 2

2 2 2 2 0 0 0

0 1 2 3

2 2

3 32 1 1

1 2 3

3 2 1 3 2

ˆ ˆ ˆrot 2 rot 2 div d

        

                 

F x x x x x

x x
x x x

x
x x x x x

          

  
     

   






= +  + +  +

  
= + + + + + +

  

   
+ − + − +

    

  

     
     
       

   
   
   





( )

( )

2

2

3 0 3 0 02 1 1 2

2

31 2

1

3 2 1 1 3 2 2 1 3

1 2 3

                 2

                 d .

x

x
x x x x x x x x x

x x
x x x



       


 



−



       
+ − + − + −

        

 
+ + +

  

  
  

   

     
      

     

  
 

  

 

Suppose that   minimizes F on S. We will show that   solves some differential equation. Let   

: H →  be any smooth function and 0  on  =  , i.e., ( )
0

,C H


  . Define a real function 

 ( )  : ,f f F→ = +   . (60) 

Obviously ( )0 0f  = , because S+    and f has minimum in 0= . We make the calculations: 
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( ) ( ) ( ) ( ) ( ) ( )
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After differentiation by parts we have 
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The last equation takes the form 
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Equivalently we can write 
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  (61) 

for all ( )
0

,C H


  . The Du Bois Reymond variational lemma [61] used for (61) implies  

( ) ( ) 0  for  0,1, 2,3.
l l

x x l   −  = =  

In consequence   must be a solution of the differential equation 

 ( ) ( ) 0x x−  =    . (62) 
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