Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Electrostatic Self-assembly of Composite Nanofiber Yarn

Version 1 : Received: 24 November 2020 / Approved: 25 November 2020 / Online: 25 November 2020 (15:08:15 CET)

A peer-reviewed article of this Preprint also exists.

Wang, W.-C.; Cheng, Y.-T.; Estroff, B. Electrostatic Self-Assembly of Composite Nanofiber Yarn. Polymers 2021, 13, 12. Wang, W.-C.; Cheng, Y.-T.; Estroff, B. Electrostatic Self-Assembly of Composite Nanofiber Yarn. Polymers 2021, 13, 12.

Abstract

Electrospinning polymer fibers for is a well-understood process, primarily resulting in random mats or single strands. More recent systems and methods have allowed for the production of nanofiber yarns (NFY) for ease of use in textiles. This paper presents a method of NFY manufacture using a simplified dry electrospinning system to produce self-assembling functional NFY capable of conducting electrical charge. The polymer is a mixture of cellulose nanocrystals (CNC), polyvinyl acrylate (PVA) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). When treated with Ethylene Glycol (EG) to enhance conductivity, fibers touching the collector plate align to the applied electrostatic field and grow, twisting together as additional nanofiber polymer is added by the jet. The longer the electrospinning continues, the longer and more uniformly twisted the NFY becomes. This process has the added benefit of reducing the electric field required for NFY production from >2.43 kV cm-1 to 1.875 kV cm-1.

Keywords

Fabrics/Textiles; Polymer fibers; textile composites; conductive nanofiber; Electro-spinning

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.