Preprint
Review

Quantitative Imaging and Radiomics in Multiple Myeloma: opportunity or hype?

Altmetrics

Downloads

329

Views

250

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 November 2020

Posted:

23 November 2020

You are already at the latest version

Alerts
Abstract
Multiple Myeloma (MM) is the second most common type of hematological disease and, although it is rare among patients under 40 years of age, its incidence rises in elderly subject. MM manifestations are usually known with the abbreviation CRAB (hyperCalcemia, Renal failure, Anaemia, and lytic Bone lesions). In particular, the extent of the bone disease is negatively related to a decreased patients’ quality of life and, in general, bone disease in MM increases both morbidity and mortality. The detection of lytic bone lesions on imaging, especially CT and MRI, is becoming crucial from the clinical viewpoint to separate asymptomatic from symptomatic MM patients and the detection of focal lytic lesion in these imaging data is becoming relevant even when no clinical symptoms are present. Therefore, radiology is pivotal in the staging and accurate management of patients with MM even in early phases of the disease. In this review we describe the opportunities offered by quantitative imaging and radiomics in multiple myeloma. At present time there is still high variability in the choice between various imaging methods to study MM patients and high variability in image interpretation with suboptimal agreement among readers even in tertiary centres. Therefore, the potential of medical imaging for patients affected by MM is still to be completely unveiled. In the next years, new insights to study MM with medical imaging will derive from artificial intelligence (AI) and radiomics usage in different bone lesions and from the wide implementations of quantitative methods to report CT and MRI. Eventually, medical imaging data can be integrated with the patient's outcomes with the purpose to find radiological biomarkers for predicting the disease prognostic flow and its therapeutic response.
Keywords: 
Subject: Medicine and Pharmacology  -   Oncology and Oncogenics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated