Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Numerical Modeling of Ink Widening and Coating Gap in Roll-to-Roll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer

Version 1 : Received: 19 November 2020 / Approved: 20 November 2020 / Online: 20 November 2020 (07:08:12 CET)

A peer-reviewed article of this Preprint also exists.

Kim, S.; Lee, J.; Jo, M.; Lee, C. Numerical Modeling of Ink Widening and Coating Gap in Roll-to-Roll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer. Polymers 2020, 12, 2927. Kim, S.; Lee, J.; Jo, M.; Lee, C. Numerical Modeling of Ink Widening and Coating Gap in Roll-to-Roll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer. Polymers 2020, 12, 2927.

Abstract

Slot-die coatings are advantageous when used for coating large-area flexible devices; in particular, the coating width can be controlled, and simultaneous multi-layer coatings can be processed. Till date, the effects of ink widening and coating gap on the coating thickness have only been considered in a few studies. To this end, we developed two mathematical models to accurately estimate the coating width and thickness considering these two effects. We used root mean square deviation (RMSD) to experimentally verify the developed method. The coating width was seen to increase and the coating thickness was seen to decrease when the coating gap was increased. Experimental results showed that the estimation performances of the coating width and thickness models were as high as 98.46 % and 95.8 %, respectively. We believe that the developed models can be useful for determining the coating conditions according to the ink properties to coat a functional layer with user-defined widths and thicknesses in both lab- and industrial-scale roll-to-roll slot-die coating processes.

Keywords

flexible functional device; thin film coating; slot-die; surface tension; coating gap

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.