Nzila, A.; Musa, M.M. Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene. Int. J. Environ. Res. Public Health2021, 18, 262.
Nzila, A.; Musa, M.M. Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene. Int. J. Environ. Res. Public Health 2021, 18, 262.
Nzila, A.; Musa, M.M. Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene. Int. J. Environ. Res. Public Health2021, 18, 262.
Nzila, A.; Musa, M.M. Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene. Int. J. Environ. Res. Public Health 2021, 18, 262.
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which consist of low-molecular-weight PAHs (LMW-PAHs) and high-molecular-weight PAHs (HMW-PAHs), form an important class of pollutants. Pyrene and benzo[a]pyrene (BaP) are the main pollutants belonging to HMW-PAHs, and their degradation by microorganisms remains an important strategy for their removal from the environments. Extensive studies have been carried out on the isolation and characterisation of microorganisms that actively degrade LMW-PAHs, and to a certain extent, the HMW-PAH pyrene. However, so far, limited work has been carried out on BaP biodegradation. BaP consists of five fused aromatic rings, which confers this compound a high stability, rendering it less amenable to biodegradation. The current review summarizes the emerging reports on BaP biodegradation. More specifically, work carried out on BaP bacterial degradation and current knowledge gaps that limit our understanding of BaP degradation are highlighted. Moreover, new avenues of research on BaP degradation are proposed, specifically in the context of the development of “omics” approaches
Biology and Life Sciences, Biochemistry and Molecular Biology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.