Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

On Reduced Consumption of Fossil Fuels in 2020 and Its Consequences in Global Environment and Exergy Demand

Version 1 : Received: 8 November 2020 / Approved: 9 November 2020 / Online: 9 November 2020 (10:38:07 CET)

A peer-reviewed article of this Preprint also exists.

Rashedi, A.; Khanam, T.; Jonkman, M. On Reduced Consumption of Fossil Fuels in 2020 and Its Consequences in the Global Environment and Exergy Demand. Energies 2020, 13, 6048. Rashedi, A.; Khanam, T.; Jonkman, M. On Reduced Consumption of Fossil Fuels in 2020 and Its Consequences in the Global Environment and Exergy Demand. Energies 2020, 13, 6048.

Journal reference: Energies 2020, 13, 6048
DOI: 10.3390/en13226048

Abstract

As the world grapples with the COVID-19 pandemic, there has been a sudden and abrupt change in global energy landscape. Traditional fossil fuels that serve as the linchpin of the modern civilization have found their consumption rapidly fell across the most categories due to strict lockdown and stringent measures that have been adopted to suppress the disease. These changes consequently steered various environmental benefits across the world in recent time. The present article is an attempt to investigate these environmental benefits and reversals that have been materialized in this unfolding situation due to reduced consumption of fossil fuels. Life cycle assessment tool has been used hereby to evaluate nine environmental impacts and one energy based impact. These impacts include: ozone formation (terrestrial ecosystems), terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, land use, mineral resources scarcity and cumulative exergy demand. Outcomes from the study demonstrate that COVID-19 has delivered impressive changes in global environment and life cycle exergy demand with about 11-25% curtailment in all above-mentioned impacts in 2020 in comparison to their corresponding readings in 2019.

Subject Areas

fossil fuel; life cycle assessment (LCA); COVID-19; environment; resources; exergy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.