Preprint
Article

This version is not peer-reviewed.

Tailoring of Thermo-Mechanical Properties of Hybrid Composite-Metal Bonded Joints

A peer-reviewed article of this preprint also exists.

Submitted:

29 October 2020

Posted:

30 October 2020

You are already at the latest version

Abstract
Metallic substrates and polymer adhesive in composite-metal joints have a relatively large coefficient of thermal expansion (CTE) mismatch, which is a barrier in the growing market of electric vehicles and their battery structures. It is reported that adding carbon nanotubes (CNTs) to the adhesive reduces the CTE of the CNT enhanced polymer adhesive multi-material system, therefore when used in adhesively bonded joints it would, theoretically, result in low CTE mismatch in the joint system. The current article presents the influence of two specific mass ratios of CNTs on the CTE of the enhanced polymer. It was observed that the addition of 1.0 wt% and 2.68 wt% of multi-walled CNTs (MWCNTs) decreased the CTE of the polymer adhesive from 7.5e-5 1/C (pristine level) to 5.87e-5 1/C and 4.43e-5 1/C, respectively by 22% and 41% reduction. The reduction in the CTE was predicted, theoretically, which showed that CTE should have been reduced to 3.6e-5 1/C (52% reduction) and 1.4e-5 1/C (81% reduction). This may be due to the fact that, Raman spectroscopy of the MWCNTs identified defects in the raw material, and scanning electron microscopy (SEM) identified agglomeration of MWCNTs on the surface and cross-section of the modified polymers.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated