You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

IGFBP2 is a Potential Master-Regulator Driving Dysregulated Gene Network Responsible for Short Survival in Glioblastoma Multiforme

Altmetrics

Downloads

791

Views

734

Comments

0

Submitted:

10 December 2020

Posted:

11 December 2020

Read the latest preprint version here

Alerts
Abstract
Only two percent of Glioblastoma multiforme (GBM) patients respond to standard care and survive beyond 36 months (long-term survivors, LTS) while the majority survives less than 12 months (short-term survivors, STS). To understand the mechanism leading to poor survival, we analyzed publicly available datasets of 113 STS and 58 LTS. This analysis revealed 198 differentially expressed genes (DEGs) that co-occur with aggressive tumor growth and may be responsible for the poor prognosis. These genes belong largely to the GO-categories “epithelial to mesenchymal transition” and “response to hypoxia”. In this paper we applied upstream analysis approach which involves state-of-art promoter analysis and network analysis of the dysregulated genes potentially responsible for short survival in GBM. Transcription factors associated with GBM pathology like NANOG, NF-κB, REST, FRA-1, PPARG and seven others were found enriched in regulatory regions of the dysregulated genes. Based on network analysis, we propose novel gene regulatory network regulated by five master regulators – IGFBP2, VEGFA, VEGF165, PDGFA, AEBP1 and OSMR which can potentially act as therapeutic targets for enhancing GBM prognosis. Critical analysis of this gene regulatory network gives insights on mechanism of gene regulation by IGFBP2 via several transcription factors including the key molecule of GBM tumor invasiveness and progression FRA-1. All the observations are validated in independent cohorts and their impact on overall is studied on TCGA-GBM RNA seq data.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated