Working Paper Article Version 1 This version is not peer-reviewed

Effect of the Ti6Al4V Alloy Track Trajectories on Mechanical Properties in Direct Metal Deposition

Version 1 : Received: 29 September 2020 / Approved: 30 September 2020 / Online: 30 September 2020 (16:42:06 CEST)

A peer-reviewed article of this Preprint also exists.

Erdakov, I.; Glebov, L.; Pashkeev, K.; Bykov, V.; Bryk, A.; Lezin, V.; Radionova, L. Effect of the Ti6Al4V Alloy Track Trajectories on Mechanical Properties in Direct Metal Deposition. Machines 2020, 8, 79. Erdakov, I.; Glebov, L.; Pashkeev, K.; Bykov, V.; Bryk, A.; Lezin, V.; Radionova, L. Effect of the Ti6Al4V Alloy Track Trajectories on Mechanical Properties in Direct Metal Deposition. Machines 2020, 8, 79.

Journal reference: Machines 2020, 8, 79
DOI: 10.3390/machines8040079

Abstract

: TiAl6V4 alloy is widely used in selective laser melting and direct laser melting. In turn, works devoted to the issue of how the track stacking scheme affects the value of mechanical properties is not enough. The influence of the Ti6Al4V alloy track trajectories on the microstructure and mechanical properties during direct laser deposition is studied in this article for the first time. The results were obtained on the influence of «parallel» and «perpendicular» technique of laying tracks in direct laser synthesis. All studied samples have a microstructure typical of the hardened two-phase condition titanium. It is shown that the method of laying tracks and the direction of load application during compression testing relative to the location of the tracks leads to a change in the ultimate strength of the Ti-6Al-4V alloy from 1794 to 1910 MPa. The plasticity of the Ti-6Al-4V alloy obtained by direct laser alloying can vary from 21.3 to 33.0% depending on the direction of laying the tracks and the direction of the compression test. The hardness of alloys varies in the range from 409 to 511 HV and depends on the method of laying the tracks and the direction of hardness measurements.

Subject Areas

additive technology; titanium alloy; TiAl6V4; microstructure; tensile strength; Laser Metal Deposition

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.