Preprint
Article

This version is not peer-reviewed.

Enabling Resilient Multi-Mode Controller in Power System With Re and Bes Using Firefly Algorithm

Submitted:

22 September 2020

Posted:

23 September 2020

You are already at the latest version

Abstract
This paper proposed a damping method for enhancing oscillatory stability performance of power systems with high penetration of renewable energy by a resilient wide-area multi-mode controller. The resilient wide-area multi-mode controller is used as an additional controller in a renewable energy system with a battery energy storage to enhance the damping of the critically weak modes. The weak modes are likely to be triggered in the event of line outages or any other disturbances, and the system may become unstable in the absence of proper corrective and preventive control. A firefly algorithm has been employed to design such a controller. Eigenvalue analysis and time-domain simulation are used to analyze the performance of the proposed controller in a realistic representative power system. From the simulation results, it is evident that the oscillatory stability performance of the renewable rich power system can be enhanced with the proposed control to keep the damping on critical modes to the industrial standards. Furthermore, renewable energy penetration can be increased significantly in the realistic representative system by introducing the proposed controller without disturbing the oscillatory stability margin.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated