Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Is the Past Determined?

Version 1 : Received: 19 September 2020 / Approved: 21 September 2020 / Online: 21 September 2020 (04:26:41 CEST)

How to cite: ZWIRN, H. Is the Past Determined?. Preprints 2020, 2020090493. ZWIRN, H. Is the Past Determined?. Preprints 2020, 2020090493.


In a recent paper [1], I argued against backward in time effects used by several authors to explain delayed choice experiments. I gave an explanation showing that there is no physical influence propagating from the present to the past and modifying the state of the system at a time previous to the measurement. However, though the solution is straightforward in the case of delayed choice experiments involving only one particle, it is subtler in the case of experiments involving two entangled particles because they give rise to EPR-like situations. Considering that a measurement is not an actual change of the physical state of a system and is relative to the observer allows to understand that there is neither backward in time effects nor instantaneous collapse of the second system when the first one is measured, as is often postulated. This allows also to get rid of any non-locality [2]. In this paper, I want to go further into the consequences of this way of considering the measurement, that I have called Convivial Solipsism, and show that even if, in the usual sense, there is no physical effect of the present or of the future on the past, we must nevertheless consider that the observer’s past is sometimes not entirely determined and that it becomes determined only when certain measurements are done latter. This apparent contradiction disappears if one understand that each observer builds, through her own measurements, her own world (that I call the phenomenal world in Convivial Solipsism) which is different from what we are used to consider as the common world shared by everybody.


measurement problem; convivial solipsism; realism; entanglement; non-locality; past events; delayed choice


Physical Sciences, Particle and Field Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.