Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

General Assessment of the Operational Utility of National Water Model Reservoir Inflows for Bureau of Reclamation Facilities

Version 1 : Received: 8 September 2020 / Approved: 10 September 2020 / Online: 10 September 2020 (09:04:18 CEST)

A peer-reviewed article of this Preprint also exists.

Viterbo, F.; Read, L.; Nowak, K.; Wood, A.W.; Gochis, D.; Cifelli, R.; Hughes, M. General Assessment of the Operational Utility of National Water Model Reservoir Inflows for the Bureau of Reclamation Facilities. Water 2020, 12, 2897. Viterbo, F.; Read, L.; Nowak, K.; Wood, A.W.; Gochis, D.; Cifelli, R.; Hughes, M. General Assessment of the Operational Utility of National Water Model Reservoir Inflows for the Bureau of Reclamation Facilities. Water 2020, 12, 2897.

Abstract

This work investigates the utility of the National Oceanic and Atmospheric Administration’s National Water Model (NWM) for water management operations by assessing the total inflow into a select number of reservoirs across the Central and Western U.S. Total inflow is generally an unmeasured quantity, though critically important for anticipating both floods and shortages in supply over a short-term (hourly) to sub-seasonal (monthly) time horizon. The NWM offers such information at over 5,000 reservoirs across the U.S., however, its skill at representing inflow processes is largely unknown. The goal of this work is to understand the drivers for both well performing and poor performing NWM inflows such that managers can get a sense of the capability of NWM to capture natural hydrologic processes and in some cases, the effects of upstream management. We analyzed the inflows for a subset of Bureau of Reclamation (BoR) reservoirs within the NWM over the long-term simulations (retrospectively, seven years) and for short, medium and long-range operational forecast cycles over a one-year period. We utilize ancillary reservoir characteristics (e.g. physical and operational) to explain variation in inflow performance across the selected reservoirs. In general, we find that NWM inflows in snow-driven basins outperform those in rain-driven, and that assimilated basin area, upstream management, and calibrated basin area all influence the NWM’s ability to reproduce daily reservoir inflows. The final outcome of this work proposes a framework for how the NWM reservoir inflows can be useful for reservoir management, linking reservoir purposes with the forecast cycles and retrospective simulations.

Keywords

National Water Model; Water Management; Total Inflow

Subject

Physical Sciences, Fluids and Plasmas Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.