Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Global Proteomic Profiling of Piscirickettsia Salmonis and Salmon Macrophage-Like Cells during Intracellular Infection

Version 1 : Received: 4 September 2020 / Approved: 4 September 2020 / Online: 4 September 2020 (12:51:22 CEST)

A peer-reviewed article of this Preprint also exists.

Ortiz-Severín, J.; Travisany, D.; Maass, A.; Cambiazo, V.; Chávez, F.P. Global Proteomic Profiling of Piscirickettsia salmonis and Salmon Macrophage-Like Cells during Intracellular Infection. Microorganisms 2020, 8, 1845. Ortiz-Severín, J.; Travisany, D.; Maass, A.; Cambiazo, V.; Chávez, F.P. Global Proteomic Profiling of Piscirickettsia salmonis and Salmon Macrophage-Like Cells during Intracellular Infection. Microorganisms 2020, 8, 1845.

Abstract

Piscirickettsia salmonis is an intracellular bacterial fish pathogen that causes piscirickettsiosis, a disease with numerous negative impacts in the Chilean salmon farming industry. Although transcriptomic studies of P. salmonis and its host have been performed, dual host-pathogen proteomic approaches during infection are still missing. Considering that gene expression not always corresponds with observed phenotype, and bacteriological culture studies inadequately reflect infection conditions, to improve the existing knowledge for the pathogenicity of P. salmonis we present here a global proteomic profiling of Salmon salar macrophage-like cell cultures infected with P. salmonis LF-89. The proteomic analyses identified several P. salmonis proteins from two temporally different stages of macrophages infection; some of them related to key functions for bacterial survival in other intracellular pathogens. Metabolic differences were observed in early-stage infection bacteria, compared to late-stage infections. Virulence factors related to membrane, LPS and surface component modifications, cell motility, toxins and secretion systems also varied between the infection stages. Pilus proteins, beta-hemolysin and the T6SS were characteristic of the early-infection stage, while fimbria, upregulation of 10 toxins or effector proteins, and the Dot/Icm T4SS were representative of the late-infection stage bacteria. Previously described virulence-related genes in P. salmonis plasmids were identified by proteomic assays during infection in SHK-1 cells, accompanied by an increase of mobile-related elements. By comparing the infected and un-infected proteome of SHK-1 cells, we observed changes in cellular and ROS homeostasis, innate immune response, microtubules and actin cytoskeleton organization and dynamics, alteration in phagosome components, iron transport and metabolism, and amino acids, nucleoside and nucleotide metabolism, together with an overall energy and ATP production alteration. Our global proteomic profiling and the current knowledge of the P. salmonis infection process allowed us to propose a model of the macrophage-P. salmonis interaction.

Keywords

Fish pathogen; host-pathogen interaction; proteomics; infection assays; virulence factors

Subject

Biology and Life Sciences, Immunology and Microbiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.