Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Baseline of Carbon Stocks in Pinus radiata and Eucalyptus spp. Plantations of Chile

Version 1 : Received: 2 September 2020 / Approved: 4 September 2020 / Online: 4 September 2020 (12:14:53 CEST)

A peer-reviewed article of this Preprint also exists.

Olmedo, G.F.; Guevara, M.; Gilabert, H.; Montes, C.R.; Arellano, E.C.; Barría-Knopf, B.; Gárate, F.; Mena-Quijada, P.; Acuña, E.; Bown, H.E.; Ryan, M.G. Baseline of Carbon Stocks in Pinus radiata and Eucalyptus spp. Plantations of Chile. Forests 2020, 11, 1063. Olmedo, G.F.; Guevara, M.; Gilabert, H.; Montes, C.R.; Arellano, E.C.; Barría-Knopf, B.; Gárate, F.; Mena-Quijada, P.; Acuña, E.; Bown, H.E.; Ryan, M.G. Baseline of Carbon Stocks in Pinus radiata and Eucalyptus spp. Plantations of Chile. Forests 2020, 11, 1063.

Abstract

Forest plantations have a large potential for carbon sequestration, playing an important role in the global carbon cycle. However, despite the huge amount of research carried out worldwide, the absolute contribution of industrial forest plantations is still incomplete for some parts of the world. To contribute to bridge this gap, we calculated the amount of C stock in three fast growing forest species in Chile. Relevant C pools (above-ground and below-ground biomass, forest floor, and soil) were considered for this analysis. Across the industrial plantation forests of Chile, carbon accumulated in the above-ground biomass was 181–212 Mg · ha−1 for Pinus radiata, 147–180 Mg · ha−1 for Eucalyptus nitens, and 95–117 Mg · ha−1 for Eucalyptus globulus (age 20–24 years for P.radiata and 10–14 years for Eucalyptus). Our results agree with other studies showing that 30%–50% of the total C stock is stored in the soil. Total C stocks were for 343 Mg · ha−1 for P.radiata, 352 Mg · ha−1 for E.nitens, and 254 Mg · ha−1 for E. gloubulus, also at the end of a typical rotation. The carbon pool in the forest floor was found to be significantly lower (less than 4% of the total) when compared to the other pools and showed large spatial variability. We conclude that industrial forest plantations are a valuable tool to reduce atmospheric CO2 and mitigate climate change. Given the contribution of soils to total carbon stocks, special attention should be paid to forest management activities that affect the soil organic carbon pool.

Keywords

forest carbon cycle; climate change mitigation; plantation foestry; soil carbon

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.