Preprint
Article

This version is not peer-reviewed.

Defect Depth Estimation in Infrared Thermography with Deep Learning

A peer-reviewed article of this preprint also exists.

Submitted:

25 August 2020

Posted:

26 August 2020

Read the latest preprint version here

Abstract
Infrared thermography has already been proved to be a significant method in non-destructive evaluation since it gives information with immediacy, rapidity and low cost. However, the thorniest issue for wider application of IRT is the quantification. In this work, we proposed a specific depth quantifying technique by employing the Gated Recurrent Unites (GRU) in composite material samples via pulsed thermography (PT). Carbon Fiber Reinforced Polymer (CFRP) embedded with flat bottom holes were designed via Finite Element Method (FEM) modeling in order to precisely control the depth and geometrics of the defects. The GRU model automatically quantify the depth of defects presented in the Plexiglasses materials. The proposed evaluated the accuracy and performance of synthetic plexiglasses data from FEM for defect depth predictions.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated