Preprint
Review

This version is not peer-reviewed.

On Statistical Analysis of Brain Variability

Submitted:

22 September 2021

Posted:

23 September 2021

You are already at the latest version

Abstract
We discuss what we believe could be an improvement in future discussions of the ever-changing brain. We do so by distinguishing different types of brain variability and outlining methods suitable to analyse them. We argue that, when studying brain and behaviour data, classical methods such as regression analysis and more advanced approaches both aim to decompose the total variance into sensible variance components. In parallel, we argue that a distinction needs to be made between innate and acquired brain variability. For varying high-dimensional brain data, we present methods useful to extract their low-dimensional representations. Finally, to trace potential causes and predict plausible consequences of brain variability, we discuss how to combine statistical principles and neurobiological insights to make associative, explanatory, predictive, and causal enquires; but cautions are needed to raise association- or prediction-based neurobiological findings to causal claims.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated