Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Melatonin-induced Water Stress Tolerance in Plants: Recent Advances

Version 1 : Received: 15 August 2020 / Approved: 17 August 2020 / Online: 17 August 2020 (10:19:52 CEST)

A peer-reviewed article of this Preprint also exists.

Moustafa-Farag, M.; Mahmoud, A.; Arnao, M.B.; Sheteiwy, M.S.; Dafea, M.; Soltan, M.; Elkelish, A.; Hasanuzzaman, M.; Ai, S. Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances. Antioxidants 2020, 9, 809. Moustafa-Farag, M.; Mahmoud, A.; Arnao, M.B.; Sheteiwy, M.S.; Dafea, M.; Soltan, M.; Elkelish, A.; Hasanuzzaman, M.; Ai, S. Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances. Antioxidants 2020, 9, 809.

Journal reference: Antioxidants 2020, 9, 809
DOI: 10.3390/antiox9090809

Abstract

Water stress (drought and waterlogging) is drastic abiotic stress to plant growth and development. Melatonin, bioactive plant hormone, has been widely tested in drought situations in diverse plant species, while a few studies on the role of melatonin in waterlogging stress conditions have been published. In the current review, we analyze the bio-stimulatory functions of melatonin on plants under both drought and waterlogging stress. Melatonin controls the levels of reactive oxygen and nitrogen species and positively changes the molecular defense to improve plant tolerance against drought and waterlogging stress. Moreover, the crosstalk of melatonin and other phytohormones is a key element on plant survival under drought stress, while this relationship needs further investigation under waterlogging stress. In this review, we draw the complete story of water stress on both sides: drought and waterlogging through discussing the previous critical studies under both conditions. Moreover, we suggest several research directions, especially for waterlogging, which remains a big vague piece of melatonin and water stress puzzle.

Subject Areas

Abiotic stress; Melatonin; Water stress; Drought; Waterlogging; Antioxidants; Stress signalling, phytohormones

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.