Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Capturing the Impact of 2018 European Drought and Heat Using OCO-2 Solar-Induced Fluorescence

Version 1 : Received: 13 August 2020 / Approved: 14 August 2020 / Online: 14 August 2020 (12:11:37 CEST)

A peer-reviewed article of this Preprint also exists.

Shekhar, A.; Chen, J.; Bhattacharjee, S.; Buras, A.; Castro, A.O.; Zang, C.S.; Rammig, A. Capturing the Impact of the 2018 European Drought and Heat across Different Vegetation Types Using OCO-2 Solar-Induced Fluorescence. Remote Sens. 2020, 12, 3249. Shekhar, A.; Chen, J.; Bhattacharjee, S.; Buras, A.; Castro, A.O.; Zang, C.S.; Rammig, A. Capturing the Impact of the 2018 European Drought and Heat across Different Vegetation Types Using OCO-2 Solar-Induced Fluorescence. Remote Sens. 2020, 12, 3249.

Abstract

The European heatwave of 2018 led to record-breaking temperatures and extremely dry conditions in many parts of the continent resulting in widespread decrease in agricultural yield, early tree-leaf senescence, and increase in forest fires in Northern Europe. Our study aims to capture the impact of the 2018 European heatwave on terrestrial ecosystem through the lens of a high-resolution solar-induced fluorescence (SIF) data acquired from the Orbiting Carbon Observatory (OCO-2) satellite. SIF is proposed to be a direct proxy for gross primary productivity (GPP) and thus can be used to draw inferences about changes in photosynthetic activity in vegetation due to extreme events. We explore spatial and temporal SIF variation and anomaly during spring and summer months across different vegetation types (agriculture, broadleaved forest, coniferous forest, and mixed forest) during the European heatwave of 2018 and compare it to non-drought conditions (most of Southern Europe). About one-third of Europe’s land area experienced a consecutive spring and summer drought in 2018. Comparing 2018 to mean (2015-2017) conditions, we found a change in intra-spring season SIF dynamics for all vegetation types, with lower SIF during the start of spring followed by an increase in fluorescence from mid-April. Summer, however, showed a significant decrease in SIF. Our results show that particularly agricultural areas were severely affected by the hotter drought of 2018. Furthermore, the intense heat wave in Central Europe showed about 31% decrease in SIF values during July and August as compared to the mean over three previous years. Furthermore, our MODIS and OCO-2 comparative results indicate that especially for forests, OCO-2 SIF has a quicker response and possible higher sensitivity to drought in comparison to MODIS’s fPAR and NDVI when considering shorter reference periods, which highlights the added value of remotely sensed solar-induced fluorescence for studying the impact of drought on vegetation.

Keywords

chlorophyll fluorescence; remote sensing; ecosystems; spring-summer; forest

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.