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Abstract: The European heatwave of 2018 led to record-breaking temperatures and extremely dry 

conditions in many parts of the continent resulting in widespread decrease in agricultural yield, 

early tree-leaf senescence, and increase in forest fires in Northern Europe. Our study aims to capture 

the impact of the 2018 European heatwave on terrestrial ecosystem through the lens of a high-

resolution solar-induced fluorescence (SIF) data acquired from the Orbiting Carbon Observatory 

(OCO-2) satellite. SIF is proposed to be a direct proxy for gross primary productivity (GPP) and thus 

can be used to draw inferences about changes in photosynthetic activity in vegetation due to 

extreme events. We explore spatial and temporal SIF variation and anomaly during spring and 

summer months across different vegetation types (agriculture, broadleaved forest, coniferous forest, 

and mixed forest) during the European heatwave of 2018 and compare it to non-drought conditions 

(most of Southern Europe). About one-third of Europe’s land area experienced a consecutive spring 

and summer drought in 2018. Comparing 2018 to mean (2015-2017) conditions, we found a change 

in intra-spring season SIF dynamics for all vegetation types, with lower SIF during the start of spring 

followed by an increase in fluorescence from mid-April. Summer, however, showed a significant 

decrease in SIF. Our results show that particularly agricultural areas were severely affected by the 

hotter drought of 2018. Furthermore, the intense heat wave in Central Europe showed about 31% 

decrease in SIF values during July and August as compared to the mean over three previous years. 

Furthermore, our MODIS and OCO-2 comparative results indicate that especially for forests, OCO-

2 SIF has a quicker response and possible higher sensitivity to drought in comparison to MODIS’s 

fPAR and NDVI when considering shorter reference periods, which highlights the added value of 

remotely sensed solar-induced fluorescence for studying the impact of drought on vegetation. 

Keywords: chlorophyll fluorescence, remote sensing, ecosystems, spring-summer, forest. 

 

1. Introduction 

Anthropogenic global warming is estimated to currently have reached about 1°C  above pre-

industrial levels and is estimated to further increase to 1.5°C between 2030 and 2052 under current 

rates of greenhouse gas (GHG) emissions [1]. This increase in global temperature is expected to lead 

to an increase in intensity and frequency of extreme events like heatwaves, drought and associated 

wildfires, [2–4]. In 2018, Europe faced such an extreme event characterized by record-breaking 

temperatures and long-lasting dryness, referred to as ‘hotter drought’ [5]. According to the 

European Drought Observatory of the European Commission, most of Northern and Central 
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Europe was affected by such hotter drought in 2018. On the contrary, much of the Southern 

Mediterranean Europe experienced relatively cool and moist conditions [6,7]. For Central Europe, 

various news and media articles reported severe decrease in crop yields, increase in elderly 

mortality, and forest fires along with many other adverse impacts. According to a quick attribution 

study by the World Weather Attribution, [8] heat in Northern Europe, anthropogenic climate 

change has more than doubled the probability of occurrence of such a heatwave in the region. 

Along with severe economic implications and adverse health impact on the public, such record-

breaking hotter drought events severely affect ecosystems. A direct comparison of vegetation 

response to drought in 2018 and 2003 European heatwaves using MODIS’s vegetation indices 

concluded that negative impacts in 2018 were even stronger than in 2003, with strong decline in 

agricultural land and forests, especially in Central Europe [6]. Such drought events strongly affect 

the carbon cycle, by leading to plant mortality and reductions in ecosystem carbon dioxide (CO2) 

uptake, with the potential to convert ecosystems from carbon sinks into carbon sources [9,10]. 

Gross primary productivity (GPP) is a measure of ecosystem CO2 assimilation. The estimation and 

modeling of regional or global GPP involves various uncertainties arising from model 

parameterization [11,12], thus demanding a more direct and reliable approach to estimate GPP. 

With recent advances in satellite-based measurements of solar-induced (chlorophyll) fluorescence 

(SIF), it is now possible to use SIF as a direct proxy for photosynthesis or GPP worldwide [13–17]. 

SIF is an electromagnetic signal emitted in the wavelength range of 600 to 800 nm by chlorophyll 

molecules [18]. Since SIF is directly associated with photosynthesis, it is more physiologically-based 

compared to the traditionally used vegetation indices (VIs) such as the normalized difference 

vegetation index (NDVI) and enhanced vegetation index (EVI) [19,20]. Over the last decade, several 

studies have demonstrated a strong linear relationship between satellite-based SIF and GPP 

[13,15,21–28], indicating that SIF might provide a useful approximation of GPP. The SIF retrievals 

obtained from the Japanese Greenhouse Gases Observing Satellite (GOSAT) and the European 

Global Ozone Monitoring Experiment-2 (GOME-2) were most widely used in the last decade (2007-

2017; [24,28–31]). However, due to coarse spatial resolution of the SIF footprint (10 km diameter for 

GOSAT and 40 × 40 km2, for GOME-2), these satellites presently impose serious limitations to detect 

eco-physiological changes across different vegetation types. The recent NASA’s Orbiting Carbon 

Observatory-2 (OCO-2) satellite (launched September 2014) provides SIF data at a much higher 

spatial resolution of 1.3 × 2.25 km2 with increased SIF acquisition frequency, thereby allowing to 

resolve SIF responses of various vegetation types under different climatic conditions [15,32].  

SIF acquired from GOSAT and GOME-2 have been previously used to study the effect of drought 

on vegetation. Using GOSAT’s SIF [33] showed that midday fluorescence explained the water stress 

over the Amazonian forests during a dry season in 2010. Yoshida et al [34] used GOME-2’s SIF to 

study the impact of the 2010 Russian drought and highlighted the drought-related SIF decrease for 

croplands and grasslands. Sun et al [35] studied the drought onset mechanisms and its impact on 

agriculture using GOME-2 SIF during the droughts of 2011 in Texas and 2012 in the central Great 

Plains, United States. They concluded that SIF is sensitive to both structural and physiological 

variation in vegetation during drought and considered it an appropriate tool for drought 

monitoring. Koren et al [36] developed a GOME-2 based SIF product to show that spatial SIF 

response was in good agreement with meteorological (temperature, soil moisture, 

evapotranspiration and terrestrial water storage) anomalies during the 2015/2016 El Niño Amazon 

drought. Recently Zhang et al [37] constructed a global gridded SIF dataset (CSIF) using a neural 

network trained by OCO-2 and MODIS data, which they also employed for drought monitoring. 

Their preliminary result showed that CSIF well-captured the spatial extent of droughts during the 

2015 European heatwave. 

Here, we present the impact of the 2018 European hotter drought on terrestrial ecosystem as 

perceived through OCO-2 SIF data. The novelty of this study is highlighted through the detection 
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of spatial and temporal patterns of OCO-2 SIF responses to drought and heat across different 

vegetation types. We captured and analyzed the spring-summer seasonal variation and anomaly in 

chlorophyll fluorescence across different vegetation types and tracked it with VPD and temperature 

anomalies. Furthermore, we compare SIF responses of different vegetation types under drought 

and non-drought conditions in Europe to explore the ability of OCO-2 SIF for drought impact 

characterization. Furthermore, we also discuss and compare our results with recent MODIS-based 

NDVI drought impact study. Finally, we discuss the drought-induced changes in satellite-based SIF 

measurements and perspectives of OCO remote sensing satellite products for future studies. 

2. Materials and Methods  

2.1 Study area 

The study area is restricted to the European Union. About 1/3rd of Europe (1.8 M km², drought area, 

Figure 1(a-c)) was under consecutive spring (March-May) and summer (June-August) 

meteorological drought (drought area) according to the widely accepted standardized precipitation 

evapotranspiration index (SPEI) [38] (Figure 1 (a-c)). Also, from mid-July to mid-August, Central 

Europe was affected by heatwaves with temperatures more than 5°C higher than average for more 

than a week (NOAA Global Climate Report – July, August 2018; [39,40]). These drought and heat 

conditions resulted in a severe decline in agricultural yields and early leaf senescence and forest 

fires across Central and Northern Europe. At the same time, about 1/3rd of Europe (2 M km2, non-

drought area, Figure 1 (a-c)) experienced non-drought (i.e., normal or wet) conditions during spring 

and summer, mostly across the Mediterranean (Figure 1(a-c)). Although during summer, Spain and 

Portugal did experience record-breaking temperatures, above normal precipitation prevented 

drought conditions to prevail. Thus, Europe in 2018 provides us the opportunity for a comparative 

study between productivity under consecutive spring-summer drought and under non-drought 

conditions. 

 

Figure 1. Drought severity map of Europe in (a) spring and (b) summer of 2018. The map is based on the SPEI 

Global Drought Monitor (http://spei.csic.es/index.html). (c) Drought area and non-drought area used in the 

study. Drought area has 2018 spring and summer SPEI values less than -1. Non-drought area has 2018 spring 

and summer SPEI values greater than -1. 

 

2.2 Description of datasets 

2.2.1 SIF data 
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Light energy absorbed by the leaf chlorophyll molecules has three different pathways: 

photochemistry, non-photochemical quenching (NPQ, i.e., heat dissipation), and a small fraction re-

emitted as SIF [18].Theoretically, SIF can be expressed as shown in Equation 1 [22]. 

SIF = APAR × ΦF × ΩC = PAR × fPAR × SIFyield (1) 

where APAR is the absorbed photosynthetically active radiation in Watts/m2, which is the product 

of photosynthetically active radiation (PAR) and the fraction of photosynthetically active radiation 

absorbed (fPAR) by the vegetation/canopy. SIFyield is the emitted SIF per photon absorbed [17] and 

is also defined as the effective fluorescence yield of the canopy. SIFyield is the product of fluorescence 

yield in the wavelength band of measurement (ΦF) and an escape probability term (ΩC). SIFyield is 

expected to vary with the plant’s photosynthetic light use efficiency [41,42] and canopy structural 

characteristics like leaf area index (LAI). However, with a satellite-based SIF measurement it is 

challenging to separate the canopy physiological (ΦF) and structural components (ΩC) from SIFyield 

[35,43] and it is still an active area of research. 

For this study, the SIF product from NASA’s OCO-2 satellite was used since other satellite-based 

SIF retrievals were of coarser spatial resolution (GOSAT and GOME-2). OCO-2 SIF is made 

available by the CO2 Data Portal managed by the Jet Propulsion Laboratory of the California 

Institute of Technology, United States (https://co2.jpl.nasa.gov/). The OCO-2 spectrometer measures 

spectra in the O2-A band (757–775 nm, full width at half maximum = 0.042 nm), with far-red SIF, 

retrieved at 757 and 771 nm based on the infilling of Fraunhofer lines [32,44]. The SIF retrieved at 

771 nm is typically about 1.5 times smaller than obtained at 757 nm [44], therefore we utilized SIF 

retrieved at 757 nm in our study. The major advantage of OCO-2 SIF include an about 100-fold 

increase in data acquisition frequency over GOSAT and finer spatial resolution (1.3×2.25 km2). This 

enables OCO-2 to acquire more than 105 clear-sky soundings on land per day, thus providing the 

opportunity to perform in-depth SIF based analysis like regional eco-physiological change detection 

[45,46]. However, OCO-2 SIF soundings do not have full spatial coverage (Figure 2). In this study, 

the SIF retrievals from the Level-2 OCO-2 Lite product, data version SIF v8 (version 8) were used 

from their first availability (6th September 2014) to 1st October 2018 for the whole European 

continent. The OCO-2 Lite product is bias-corrected and contains only good quality SIF sounding 

[47]. The OCO-2 takes measurements in three different observation modes, namely nadir, glint 

viewing, and a special target mode with different viewing zenith angle (VZA), typically 

alternatively with a repeat cycle of 16 days. Although SIF values are affected by VZA [48], grouping 

all the SIF sounding over a large area results in no significant SIF difference in the mean SIF 

between nadir and the combined modes [13,16] (please see Appendix A, table A1). In this study, we 

used SIF sounding from only nadir and glint mode, which each mode contributing about half of the 

total number of soundings. The percentage of nadir and glint mode data was consistent throughout 

the study period (Table S2). Figure S1 illustrates the trajectory and spatial distribution of the SIF 

soundings for Europe in 2018. The OCO-2 is a sun-synchronous satellite with a local overpass time 

at 1:30 PM compared to 9:30 AM for GOME-2 and 1:00 PM for GOSAT, thus compared to GOME-2, 

it better captures the sensitivity of fluorescence yield to water stress which is higher in the 

afternoon when plant water stress tends to peak [49]. Two important environmental factors that 

regulate plant photosynthesis are temperature and vapor pressure deficit (VPD). The SIF Lite data 

files also included VPD and temperature data from ECMWF for each SIF measurement. 

2.2.2 MODIS data 

Theoretically, SIF is directly related to fPAR (Equation 1). Thus, for improving the interpretation of 

SIF variation and anomalies, we used the MODIS Aqua fPAR product (MYD15A2H) version 6 

[50,51], which is an 8-day composite data set with a spatial resolution of 500 meters covering the 

same period as OCO-2 SIF dataset. The fPAR calculation is based on 3D radiative transfer equation 
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(Look-Up-Table based approach, [52]), which takes ‘best’ quality spectral information of red and 

near-infrared band within the 8-day period as an input, and a back-up algorithm uses empirical 

relationship based on NDVI. In addition, we also used the standard MODIS 16-days composite 

NDVI product [53] with a spatial resolution of 250m, from Terra (MOD13Q1) and Aqua 

(MYD13Q1) for comparison with SIF. These composite products are constructed using the ‘best’ 

quality pixel (low clouds, low view angle and highest NDVI) over the 16 days period of Terra and 

Aqua measurements [53]. The MODIS products were obtained from the NASA Land Processes 

Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/products). Moreover, only 

good quality MODIS pixels (VI Quality variable = 0, indicating good quality as per [53]) for fPAR 

and NDVI were chosen for subsequent analysis.   

2.2.3 Corine Land Cover data 

To study the SIF variation across different vegetation types (agriculture, broadleaved forest, 

coniferous forest, and mixed forest), we used the most recent Corine Land Cover (CLC) 2018, 

Version 20b2 provided by the European Environmental Agency (EEA) (Figure S2). The CLC 2018 

uses Sentinel-2 and Landsat-8 imageries for its construction, thereby achieving a minimum 

mapping width (resolution) of 100*100 m (CLC2018 Technical Guidelines, 2017;[54]). Agricultural 

land comprising arable lands, pastures, and heterogeneous agricultural area covered most of the 

parts of drought area (53%) and non-drought area (57%), followed by coniferous forest of about 

37% in the drought area (Table S1).  

2.3 Data analysis 

The gridded SPEI data for spring (March, April, and May, MAM) and summer (June, July, and 

August, JJA) was obtained from the SPEI Global Drought Monitor (http://spei.csic.es/index.html). 

The drought areas were defined as the areas which showed SPEI less than or equal to -1 

(meteorological drought conditions) for both spring and summer season [55,56], whereas the non-

drought areas were the ones with SPEI > -1 (near normal and wet conditions, or non-drought 

conditions) for both spring and summer.  

Standardized meteorological based drought indices can sometimes misrepresent actual climatic 

water balance (CWB) [57]. The SPEI<-1 values for the study area in 2018 completely indicated water 

deficit conditions with negative CWB values during the summer season (Figure S3). Figure 1c 

shows the drought and non-drought area used in this study. Thereafter, OCO-2 SIF sounding data 

for the drought and non-drought area were spatially joined to the CLC based on geographic 

intersection (intersection of SIF sounding and the CLC polygons). To study the variation of SIF 

across the drought and non-drought areas in spring and summer for Europe, we spatially 

aggregated all the daily SIF soundings for each of the above described vegetation types separately 

for drought and non-drought areas over the spring and summer season.  

SIF changes because of two reasons; firstly due to natural seasonal vegetation change during the 

growing season (e.g. change in chlorophyll content during the seasonal cycle) and secondly due to 

stress (e.g., heat and drought stress). To study the inter- and intra-seasonal SIF variation and 

anomalies during the drought in spring and summer, we compared SIF, temperature and VPD of 

2018 (SIF_2018, Temp_2018, VPD_2018) with their average (mean of 2015-2017; SIF_Mean, 

Temp_Mean, VPD_Mean) on a 5-day running average [9]. These anomalies of the average SIF at a 

given date would eliminate the SIF changes due to seasonality. It is important to note that Central 

Europe suffered from a heat wave during summer of 2015, with record high temperatures and 

precipitation deficit [58,59], which may lower our detected impact of 2018. For each OCO-2 

footprint, co-located MODIS’s NDVI and FPAR was interpolated in time and space so that the same 

sample is used for each data set. Finally, the OCO-2 SIF was spatially (Drought area) and 

temporally (8-day) aggregated to compare with NDVI and fPAR. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2020                   doi:10.20944/preprints202008.0327.v1

https://lpdaac.usgs.gov/products
http://spei.csic.es/index.html
https://doi.org/10.20944/preprints202008.0327.v1


 6 of 21 

 

We performed a Wilcoxon-rank sum test [60] to test for a significant location-shift (i.e. the non-

parametric difference of means) between the SIF_2018 and SIF_Mean. SIF, temperature and VPD 

anomalies (SIF-diff, Temp-diff and VPD-diff) were defined as differences between 2018 and average 

(for e.g. SIF-diff = SIF_2018 – SIF_Mean). With continued drought condition during the summer, 

Central Europe also experienced an intense heatwave during late July to early August, 2018. The 

heatwave was pronounced in Belgium (BEL), Netherlands (NLD), Denmark (DEN) and Germany 

(DEU) according to the reports published by the Royal Meteorological Institute of Belgium [61], 

Royal Netherlands Meteorological Institute [62], Danish Meteorological Institute [63] and the 

German Meteorological Office [64], respectively. To quantify the impact of this heatwave, SIF 

soundings of BEL, NLD, DEN and DEU from 15th July to 15th August, 2018 were analyzed for all the 

vegetation types and compared to the mean of 2015-2017. All analyses were processed in ‘R’[65], 

extended by the packages stats, ggplot2 [66] and dplyr [67]. 

3. Results 

3.1 Overall spring-summer SIF variation and anomaly 

Overall, the whole of Europe showed average SIF_2018 values of 0.642 W/m2/sr/µm compared to 

SIF_Mean of 0.670 (Table 1a) during spring and summer season. Although, the SIF anomaly (SIF-

Diff) was not significant for spring and combined spring-summer season for drought areas (Fig S1), 

and the whole of Europe, the summer season showed a significant decrease (p-value < 0.001) in 

SIF_2018 compared to SIF_Mean in the drought area (Table 1; Figure 2). The pattern of combined 

spring-summer season SIF-Diff for drought and non-drought area (Figure 1c) were complementary 

to each other (Table 1a). Also, the drought areas showed positive SIF-Diff for spring and negative 

SIF-Diff for summer and combined spring-summer season, whereas the non-drought area showed 

positive SIF-Diff for spring and combined spring-summer season. Although most of the SIF-Diff 

was not significant (p-value > 0.05), it is however interesting to see a distinct pattern between 

seasonal variability of SIF in relation to drought.  

Table 1. European-wide mean SIF_757nm (W/m2/sr/µm) values in spring, summer and combined spring-

summer season and their corresponding anomaly (SIF-Diff) for whole of Europe, drought area and non-

drought area. 

 (a) Combined spring-summer (b) Spring (c) Summer 

Area SIF_2018 SIF_Mean SIF-Diff SIF_2018 SIF_Mean SIF-Diff SIF_2018 SIF_Mean SIF-Diff 

Europe 0.642 0.670 -0.028 0.523 0.534 -0.011 0.766 0.820 -0.054* 

Drought area 0.558 0.596 -0.038 0.407 0.388 0.019 0.711 0.814 -0.103* 

Non-drought area 0.684 0.660 0.024 0.601 0.560 0.041 0.766 0.767 -0.001 

* p-value < 0.001 
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Figure 2. Overall SIF variation in (a) spring and (b) summer season for drought areas in 2018 (SIF_2018, in 

orange) compared to mean SIF values from 2015-2017 (SIF_Mean, in grey). Bars indicate the histogram of the 

SIF, whereas curves represent the density plot of the histogram. 

3.2 Intra-seasonal SIF variation and anomalies for different vegetation types 

The drought area was characterized by higher temperatures during the second half of both spring 

and summer season (Figure 3b). For the drought area, SIF-Diff was initially significantly negative at 

the start of the spring season for the agricultural area, whereas the difference was not significant for 

forests. Here, significance is considered as a departure of (SIF/fPAR/NDVI) values > 1 standard 

error [34,35], i.e., for Figure 3a, when the blue and red shades are not overlapping.  However, with 

increase in Temp-Diff and VPD-Diff from a couple of weeks after the middle of spring season (DOY 

120), SIF-Diff significantly increased across all land cover types (Figure 3a and 3b), with SIF-Diff 

values as high as 0.25, 0.65, 0.25 and 0.4 W/m2/sr/µm for agricultural area, broadleaved, coniferous, 

and mixed forests, respectively. The broadleaved forests (BLF) in the drought-area occur across a 

large range of latitude (from 45 N in Germany to 70 N in Norway; Figure S2) and Köppen climate 

zones (warm summer and cool summer). More intense and early spring warming occurred in the 

warm summer climate, whereas a moderate and later warming occurred in the cool summer 

climate zone (blue and black line in Figure S6). This seems to have caused leaf flushing (represented 

by the blue and green box in S6) at a difference of about 20 days between the two climate zones. 

Now, since our result is spatially and temporally aggregated, this shows two peaks during the 

spring for BLF. Thus, although there was no overall change in SIF for the spring season (section 

3.1), we observed a change in the intra-spring SIF variation pattern in 2018 compared to the mean, 

with an initial decrease (March to April) followed by a significant increase in SIF in May. This intra-

spring SIF variation reflected in fPAR variations during the spring season for drought area (Figure 

A1). Thus, SIF variation in spring was strongly related to fPAR for drought areas where continuous 

higher temperature and VPD were observed in the second half of the spring season (April-May). 

The summer season of 2018 was characterized by negative SIF-Diff (Figure 3) especially for 

agricultural areas which showed continuous negative values throughout the summer season 

(Figure 3). For forest areas, however, we observed significantly negative SIF-Diff only in the later 

part of summer (from July, DOY 185-215) when the temperature values were more than 5 degrees 

higher than the mean (Figure 3b). 

The non-drought areas were characterized by significantly higher temperatures only during the end 

of April (DOY 105-120) as illustrated in Figure 4b. Here, we observed the spring variation to be 

similar to that of the drought area (Figure 4a and 4b), which is also visible in the fPAR data (Figure 

S4a). In contrast to the drought area, summer in the non-drought area featured positive SIF-Diff for 
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all the vegetation types and especially for the agricultural area. For the non-drought area, fPAR in 

summer was higher than the mean value (Figure S4a) and also seems to closely relate to the SIF 

variation.  

 

Figure 3. (a) Intra-seasonal SIF variability based on a 5-day running mean for drought areas across different 

vegetation types, (b) Corresponding SIF anomalies (SIF-Diff), and VPD (gray line) and temperature (black line) 

anomalies. Positive values indicate a surplus of SIF, Temp and VPD, negative values indicate lower values in 

comparison to the mean from 2015-2017. Shaded area (lightblue for ‘Mean’; red for ‘2018’) in part (a) is ± 

standard error of mean obtained after spatially aggregating the samples. The vertical dashed lines divide the 

DOY into spring (DOY 60-150) and summer (DOY 151-245) season. Temp-Diff = Temp_2018 – Temp_Mean; 

VPD-Diff = VPD_2018 – VPD_Mean. 
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Figure 4. (a) Intra-seasonal SIF variability based on 5-day running mean for non-drought areas across different 

vegetation types, (b) (b) Corresponding SIF anomalies (SIF-Diff), and VPD (gray line) and temperature (black 

line) anomalies. Positive values indicate a surplus of SIF, Temp and VPD, negative values indicate lower 

values in comparison to the mean from 2015-2017. Shaded area (lightblue for SIF_Mean; red for SIF_2018) in 

part (a) is ± standard error of mean obtained after spatially aggregating the samples. The vertical dashed lines 

divide the DOY into spring (DOY 60-150) and summer (DOY 151-240) season. Temp-Diff = Temp_2018 – 

Temp_Mean; VPD-Diff = VPD_2018 – VPD_Mean. 

3.3 SIF variation during the heatwave 

Apart from the extensive drought conditions, Central Europe was also largely affected by the 2018 

heatwave, which was characterized by unusually high temperature anomalies (+5-8 °C) from mid-

July to mid-August (Figure 3a). Overall, during this heatwave in Central Europe, the SIF_2018 was 

31% lower than SIF_Mean. This difference was most pronounced in agricultural areas which 
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showed 34% lower SIF_2018 followed by mixed forest (25%), coniferous (22%) and broadleaved 

forest (16%) (Figure 5).  

 

Figure 6. Boxplots illustrating SIF variation across the four vegetation type during the heatwave (15th July to 

15th August) in central Europe (Germany, Denmark, Belgium and Netherlands) along with temperature 

differences. Dots inside the boxplots represent the corresponding mean values. 

4. Discussion 

4.1 Drought impact on SIF  

Our study showed a clear impact of the European hotter drought of 2018 on overall and intra-

seasonal SIF variation for different vegetation types as captured by the OCO-2 SIF. Early 

spring of 2018 was characterized by lower than average temperatures and VPD (non-stressed 

stage) followed by above average temperatures and VPD in the later part of spring (April-May; 

Figure 3b).  Such cooler and wetter conditions in early spring can result in poor crop 

development and lower productivity [68] and thus, lower SIF values ([69]; Figure 3b). 

Moreover, the initially cooler conditions in spring might have delayed the leaf flushing in 

deciduous trees, resulting in lower SIF values of broadleaved forests (Figure 3b). This pattern 

was less evident for the coniferous and mixed forests, probably due to the presence of 

evergreen trees. Also, the wet conditions during early spring most likely built up enough soil 

moisture for the later spring season, thus moderating the sudden warming in later spring 

season [70,71]. This combination of ample moisture supply with a rise in temperature resulted 

in an increase in SIF to above average values across all vegetation types (Figures 3 and 6). The 

variation in SIF depends on the variation of both APAR (and fPAR) and SIFyield (Equation 

1,[72]). Both, SIF and fPAR were increasing during the spring season for both drought and 

non-drought areas (Figures 3, 4, A1a and S4). Moreover, for agriculture areas affected by 
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drought, the peaks of fPAR and SIF were on almost the same day of the year (DOY ~ 145; 

Figure 3a and A1a). However, this clear synchronicity was not found for forests. Nevertheless, 

we conclude that the satellite-based SIF variation was closely coupled with fPAR variation 

under non-stress conditions (spring for drought areas and for non-drought areas in spring and 

summer). Previous studies [13,34,35] have also highlighted the synchronicity of satellite-based 

SIF with fPAR. 

The warming during late spring continued to the summer season, with the later summer 

season featuring intense heat. We found decreasing SIF in all investigated vegetation types in 

summer of 2018, which was most pronounced in the drought areas. The agricultural areas 

expressed an immediate decrease in SIF from early summer onwards most likely because of 

severe soil moisture deficits caused by early water depletion in late spring in course of dry 

weather conditions [73,74]. Ongoing drought conditions during the summer season showed 

continuous decrease in SIF for agricultural area and, with some delay in forests (Figure 3). 

Similar findings were reported by an NDVI-based study where agricultural areas and, with 

some delay, forests in central Europe faced severe decline in NDVI during the summer season 

[6]. Unlike agricultural crops, forests feature a buffered micro-climate [75–77] and given their 

deeper rooting system in comparison to crops, have access to deeper soil water and thus, can 

maintain constant photosynthesis rates for extended periods during drought conditions [78].  

Our spring-summer seasonal variation of SIF in 2018 is in close agreement with the one of 

MODIS NDVI ([6]) for agricultural areas. However, for the forest ecosystems, we found a less 

extreme SIF decline compared to NDVI-decline in Buras et al [6]. To further evaluate this 

difference we analyzed MODIS NDVI over 4 years (2015-2018), and our results indicate that 

SIF showed higher sensitivity compared to NDVI over the 4 years period (Figures A1b and 6). 

We observed that for the forest ecosystems in the drought area, fPAR- and NDVI-anomalies 

were positive during the summer season (DOY < 215) (Figures A1b and 6), i.e. when the SIF-

anomaly was reportedly negative. While Buras et al [6] used a reference period spanning 2000-

2018, where several normal and even moist summers were observed, the analyses presented 

here rely on the period 2015-2017 due to the comparably shorter mission length of OCO-2. 

However, in 2015 another severe drought hit central and southern Europe which might have 

resulted in forest legacy effects [79], i.e. low productivity and die-back in affected areas in 2016 

[80]. Consequently, regarding forests, the fPAR and NDVI values from 2018 do only 

marginally differ to the period mean (2015-2017) since forests could have been suffering at 

least in 2015 and 2016, i.e. in 2 of the three years included in the reference mean. It is therefore 

not surprising that the extremeness of 2018 in the 4 year NDVI analysis of forests (Figures A1 

and 6) did not capture the forest decline as clear as in Buras et al [6] (with 19 years reference 

period) where the majority of reference years represent years with sufficient water supply. In 

contrast to NDVI over the four years period, SIF was considerably lower in 2018 compared to 

the already low mean of previous three years (2015-2017) which may indicate its higher 

sensitivity to both physiological and structural drought response from plants. This finding 

highlights the predominance of SIF over NDVI if only short reference periods are available, for 

example, SIF available from OCO-2, upcoming OCO-3, and TROPOMI in comparison to 

SENTINEL (for NDVI).  

Vegetation indices (VIs), such as NDVI are sensitive to canopy structure and pigment 

concentration with no direct link to photosynthesis [81]. This might lead to reduced sensitivity 

of these VIs to capture drought impact when the vegetation, such as high density forests, still 

remains green (no changes in chlorophyll content) but reduce their photosynthesis initially 

during heavily stressed drought conditions [82] in early summer during the European hotter 

drought. Similar conditions might also not have resulted in significant differences of NDVI 

during the early summer of 2018 from the mean (Figure A1b). Alternatively, higher sensitivity 
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of SIF (with direct links to photosynthesis) to drought impact on high density European forest 

was evident from our study (Figures 3 and 6).  

The intense heatwave in Central Europe during July and August resulted in a significant 

decrease in SIF across all the four vegetation types, which was particularly pronounced for 

agricultural areas. The heatwave occurred at the end of the already dry summer, which was 

preceded by a dry spring. As a consequence of persisting drought, many crops desiccated, thus 

not emitting any fluorescence by end of July when temperatures were extremely high in 

Central Europe. Water stress due to high-temperature anomalies during a drought event can 

further increase heat stress due to an extended period of stomatal closure and subsequent 

reduction in evaporative cooling  [83], thus causing positive feedback resulting in even 

warmer conditions [84]. 

 

Figure 6. Anomalies (in % difference from ‘Mean’) of SIF, NDVI and fPAR for drought area across 

different vegetation types as observed from OCO-2 SIF, MODIS NDVI product (MOD/MYD13Q1) 

version 6 and MODIS fPAR product (MYD15A2H) version 6 in 2018. Positive values indicate a surplus of 

SIF, NDVI and fPAR, negative values indicate lower values in comparison to the mean from 2015-2017. 

The left and right side of blue vertical dashed line represents spring and summer season, respectively.  

4.2 SIF response during drought stress 

Water stress adversely impacts photosynthesis, either physiologically or structurally [85]. 

Physiological alterations include change in leaf biochemistry via reductions in enzymatic 

activity [86] or a reduction in mesophyll/chlorophyll, and stomatal conductance [87], resulting 

in lower CO2 uptake by the plants and thus reduced photosynthesis (i.e. lower SIF values). The 

structural changes include foliar changes like leaf wilting or rolling (changes in leaf 

inclination), thus reducing effective leaf area index (LAI), which in turn causes a reduction in 

fPAR and energy available for photosynthesis and fluorescence emission [88,89]. Furthermore, 

plants adopt different mechanism to minimize water and heat stress, like chloroplast 

avoidance movement during which plants move their chloroplast from the cell surface to side 

walls of cell [90] so as to minimize APAR [91] and thus SIF. MODIS fPAR decrease due to these 

protection mechanism, and physiological and structural changes was visible for agricultural 
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area during the summer drought (Figures A1 and 6). However, for the forest areas we found 

that MODIS fPAR for drought areas during mid-summer (DOY 185-215) was not lower than 

fPAR in previous 3 years (Figures 7 and 8). This might imply that reduction of SIF is likely 

caused by a reduction in SIFyield. SIF variation due to changes in SIFyield can be because of 

canopy’s physiological (ΦF term of Equation 1) or structural change (ΩC term of Equation 1) or 

both. The PAR absorbed by leaves is partitioned into photochemistry, heat dissipation (NPQ) 

and fluorescence emission (SIF). Although fPAR (or APAR) did not decrease, the proportion of 

fPAR (or APAR) that is used in photochemistry (to drive electron transport for carbon 

assimilation) decreases, resulting in a surplus of photosynthetic energy. Now, two other 

pathways compete to de-excite the absorbed light that is not used in photochemistry (the 

surplus photosynthetic energy), the energy emitted as SIF or energy dissipated as heat through 

NPQ [72]. The competition between these two pathways depends on the environmental stress 

[92], and during water stress conditions (drought) the reduction in SIF is linked to higher NPQ 

[93,94]. This increase in NPQ may result in a weak coupling between SIF and fPAR under 

water stress conditions, which seems to be visible for forests during mid-summer (DOY 185-

215; Figure A1). It is also possible that the MODIS fPAR could be erroneous [35] and not be the 

best estimate of fPAR, especially in case of high vegetation density (as in Europe). The backup 

algorithm of MODIS fPAR rely on its relationship with NDVI [52], which becomes non-linear 

with sharp drop of NDVI sensitivity to fPAR for moderate to high vegetation density for fPAR 

values beyond 0.7 (Figure S5). Nevertheless, further research to differentiate the canopy escape 

term (ΩC term of Equation 1) from SIF (as demonstrated by [95,96]) to study changes in 

fluorescence yield (ΦF) during extreme large scale drought event is recommended. 

Our results highlight one more reason why OCO-2 SIF can be useful to study drought impact 

on vegetation as different vegetation types have different response to drought, which was not 

efficiently captured for each vegetation types before because of the coarser resolution of 

preceding satellite-based SIF products. We would like to stress, that earlier studies used SIF at 

coarser spatial resolution (from GOME-2 or GOSAT) and mostly were not able to differentiate 

SIF responses for different vegetation types from a heterogeneous land-use area during 

drought conditions.   

5. Conclusions 

This study employed the satellite-based SIF measurements acquired from the recent OCO-2 satellite 

to study the impact of the 2018 European hotter drought on terrestrial ecosystems. Evidently, OCO-

2 SIF displayed the spatial and temporal dynamics of the 2018 European drought across different 

vegetation types (agricultural area, broadleaved forest, coniferous forest, and mixed forest). Our 

results show that the agricultural areas were severely affected by the 2018 European hotter drought. 

While SIF of forests showed a less strong reduction, legacy effects may become visible in the next 

years and thus, we recommend to closely monitor their behavior. In general, the impact of the 

heatwave in Central Europe during July-August showed an overall 31% decrease in SIF compared 

to the reference mean. The SIF variation was closely explained by fPAR variation during non-

stressed conditions. However, during water-stress conditions (drought), the SIF variation was 

attributed to variation in SIFyield. Despite few technical limitations of the OCO-2 SIF measurement 

such as the 16-days repeat cycle, it provides an excellent potential to study large-scale vegetation 

fluorescence variation at high spatial resolution and can improve our understanding of changes in 

ecosystem productivity during extreme events. Furthermore, owing to its direct origin from 

chlorophyll, OCO-2 SIF is sensitive to both physiological and structural changes in plants and can 

serve as a complementary dataset to MODIS’s vegetation indices (NDVI/EVI). Further application 

of OCO-2 SIF may include process-based SCOPE modeling to understand the variation of complex 

fluorescence yield due to different environmental stress, as well as its combination with the XCO2 

data (main product of OCO-2 satellite) to study regional carbon budgets. 
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Appendix A 

To show that our way of sampling is robust, we have compared the most recent version of spatially 

downscaled GOME-2 SIF (8 day GOME-2 downscaled SIF of 0.05*0.05 resolution at 740nm; [97] ) 

means with the OCO-2 SIF means. The percentage change in 2018 from both downscaled GOME-2 

SIF (GSIF) and OCO-2 was comparable (Table A1). This shows that although OCO-2 does not have 

a fixed revisit time. Aggregated mean values over a continental scale are robust for multi-year 

comparison. 

Table A1. Comparison of percentage change in GSIF [97] and OCO-2 SIF measurement (used in this 

study) in 2018 in comparison to Mean (2015-2017) year for three different areas.  
 

% Change from Mean 

Aggregated Area GSIF OCO-2 measurements 

Heatwave -28.91 -31.04 

Spring-Drought Area 6.20 4.90 

Summer-Drought Area -10.98 -12.65 
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Figure A1. Variation of (a) fPAR and (b) NDVI for drought area across different vegetation types as observed 

from MODIS fPAR product (MYD15A2H) version 6 and MODIS NDVI product (MOD/MYD13Q1) version 6. 

The fPAR and NDVI values are sampled from the OCO-2 SIF footprint and are spatially and temporally 

averaged for three previous years (2015-2017; ‘Mean’) and year 2018 (‘2018’). fPAR anomalies (fPAR_2018 – 

fPAR_Mean) and NDVI anomalies (NDVI_2018 – NDVI_Mean) are represented by gray bars. The left and 

right side of vertical solid line represents spring and summer season, respectively. 
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