Different water treatment regiments are revealed to have potential in enriching antibiotic resistant bacteria (ARB). Advanced oxidation processes (AOPs) based disinfection techniques have been studied widely in the recent times due to their advantages over conventional treatment methods. However, bacterial response and adaptations against the hostile environments of AOPs is not clearly understood yet. Based on the existing knowledge on the ways in which bacteria surpass the antibiotic treatment, here we propose few important aspects of bacterial adaptation which could be true for AOPs as well since both antibiotics and AOPs generate reactive oxygen species (ROS) during their modes of action. We discuss the plausible role of ROS in the selection of ARB and bacterial heterogeneity as a strategy to bypass the lethal action of AOPs. Understanding bacterial adaptation during disinfection plays a vital role in devising strategies to outclass the bacterial survival. Hence, more importance should be given to such studies in the near future for the successful implementation of AOPs.
Keywords:
Subject: Biology and Life Sciences - Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.