Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Ablation-Dominated Arcs in CO2 Atmosphere - Part II: Molecule Emission and Absorption

Version 1 : Received: 11 August 2020 / Approved: 13 August 2020 / Online: 13 August 2020 (06:00:47 CEST)

A peer-reviewed article of this Preprint also exists.

Methling, R.; Götte, N.; Uhrlandt, D. Ablation-Dominated Arcs in CO2 Atmosphere—Part II: Molecule Emission and Absorption. Energies 2020, 13, 4720. Methling, R.; Götte, N.; Uhrlandt, D. Ablation-Dominated Arcs in CO2 Atmosphere—Part II: Molecule Emission and Absorption. Energies 2020, 13, 4720.

Journal reference: Energies 2020, 13, 4720
DOI: 10.3390/en13184720

Abstract

Molecule radiation can be used as a tool to study colder regions in switching arc plasmas like arc fringes in contact to walls and ranges around current zero (CZ). This is demonstrated in the present study for the first time for the case of ablation-dominated high–current arcs as key elements of self–blast circuit breakers. The arc in a model circuit breaker (MCB) in CO2 with and an arc in a long nozzle under ambient conditions with peak currents between 5 and 10 kA were studied by emission and absorption spectroscopy in the visible spectral range. The nozzle material was polytetrafluoroethylene (PTFE) in both cases. Imaging spectroscopy was carried out either with high-speed cameras or with intensified CCD cameras. A pulsed high-intensity Xe lamp was applied as background radiator for the broad-band absorption spectroscopy. Emission of Swan bands from carbon dimers was observed at the edge of nozzles only or across the whole nozzle radius with highest intensity in the arc center, depending on current and nozzle geometry. Furthermore, absorption of C2 Swan bands and CuF bands were found with the arc plasma serving as background radiator. After CZ, only CuF was detected in absorption experiments.

Subject Areas

circuit breaker; switching arc; optical emission spectroscopy; optical absorption spectroscopy; current zero; SF6 alternative gases; CO2; PTFE; Swan bands; CuF

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.